package edwards25519

Import Path
	crypto/ed25519/internal/edwards25519 (on golang.org and go.dev)

Dependency Relation
	imports 5 packages, and imported by one package

Involved Source Files Package edwards25519 implements group logic for the twisted Edwards curve -x^2 + y^2 = 1 + -(121665/121666)*x^2*y^2 This is better known as the Edwards curve equivalent to Curve25519, and is the curve used by the Ed25519 signature scheme. Most users don't need this package, and should instead use crypto/ed25519 for signatures, golang.org/x/crypto/curve25519 for Diffie-Hellman, or github.com/gtank/ristretto255 for prime order group logic. However, developers who do need to interact with low-level edwards25519 operations can use filippo.io/edwards25519, an extended version of this package repackaged as an importable module. (Note that filippo.io/edwards25519 and github.com/gtank/ristretto255 are not maintained by the Go team and are not covered by the Go 1 Compatibility Promise.) edwards25519.go scalar.go scalarmult.go tables.go
Package-Level Type Names (total 2)
/* sort by: | */
Point represents a point on the edwards25519 curve. This type works similarly to math/big.Int, and all arguments and receivers are allowed to alias. The zero value is NOT valid, and it may be used only as a receiver. Add sets v = p + q, and returns v. Bytes returns the canonical 32-byte encoding of v, according to RFC 8032, Section 5.1.2. Equal returns 1 if v is equivalent to u, and 0 otherwise. Negate sets v = -p, and returns v. ScalarBaseMult sets v = x * B, where B is the canonical generator, and returns v. The scalar multiplication is done in constant time. ScalarMult sets v = x * q, and returns v. The scalar multiplication is done in constant time. Set sets v = u, and returns v. SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not represent a valid point on the curve, SetBytes returns nil and an error and the receiver is unchanged. Otherwise, SetBytes returns v. Note that SetBytes accepts all non-canonical encodings of valid points. That is, it follows decoding rules that match most implementations in the ecosystem rather than RFC 8032. Subtract sets v = p - q, and returns v. VarTimeDoubleScalarBaseMult sets v = a * A + b * B, where B is the canonical generator, and returns v. Execution time depends on the inputs. func NewGeneratorPoint() *Point func NewIdentityPoint() *Point func (*Point).Add(p, q *Point) *Point func (*Point).Negate(p *Point) *Point func (*Point).ScalarBaseMult(x *Scalar) *Point func (*Point).ScalarMult(x *Scalar, q *Point) *Point func (*Point).Set(u *Point) *Point func (*Point).SetBytes(x []byte) (*Point, error) func (*Point).Subtract(p, q *Point) *Point func (*Point).VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point func (*Point).Add(p, q *Point) *Point func (*Point).Equal(u *Point) int func (*Point).Negate(p *Point) *Point func (*Point).ScalarMult(x *Scalar, q *Point) *Point func (*Point).Set(u *Point) *Point func (*Point).Subtract(p, q *Point) *Point func (*Point).VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point
A Scalar is an integer modulo l = 2^252 + 27742317777372353535851937790883648493 which is the prime order of the edwards25519 group. This type works similarly to math/big.Int, and all arguments and receivers are allowed to alias. The zero value is a valid zero element. Add sets s = x + y mod l, and returns s. Bytes returns the canonical 32-byte little-endian encoding of s. Equal returns 1 if s and t are equal, and 0 otherwise. Multiply sets s = x * y mod l, and returns s. MultiplyAdd sets s = x * y + z mod l, and returns s. Negate sets s = -x mod l, and returns s. Set sets s = x, and returns s. SetBytesWithClamping applies the buffer pruning described in RFC 8032, Section 5.1.5 (also known as clamping) and sets s to the result. The input must be 32 bytes, and it is not modified. Note that since Scalar values are always reduced modulo the prime order of the curve, the resulting value will not preserve any of the cofactor-clearing properties that clamping is meant to provide. It will however work as expected as long as it is applied to points on the prime order subgroup, like in Ed25519. In fact, it is lost to history why RFC 8032 adopted the irrelevant RFC 7748 clamping, but it is now required for compatibility. SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes returns nil and an error, and the receiver is unchanged. SetUniformBytes sets s to an uniformly distributed value given 64 uniformly distributed random bytes. Subtract sets s = x - y mod l, and returns s. func NewScalar() *Scalar func (*Scalar).Add(x, y *Scalar) *Scalar func (*Scalar).Multiply(x, y *Scalar) *Scalar func (*Scalar).MultiplyAdd(x, y, z *Scalar) *Scalar func (*Scalar).Negate(x *Scalar) *Scalar func (*Scalar).Set(x *Scalar) *Scalar func (*Scalar).SetBytesWithClamping(x []byte) *Scalar func (*Scalar).SetCanonicalBytes(x []byte) (*Scalar, error) func (*Scalar).SetUniformBytes(x []byte) *Scalar func (*Scalar).Subtract(x, y *Scalar) *Scalar func (*Point).ScalarBaseMult(x *Scalar) *Point func (*Point).ScalarMult(x *Scalar, q *Point) *Point func (*Point).VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point func (*Point).VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point func (*Scalar).Add(x, y *Scalar) *Scalar func (*Scalar).Equal(t *Scalar) int func (*Scalar).Multiply(x, y *Scalar) *Scalar func (*Scalar).MultiplyAdd(x, y, z *Scalar) *Scalar func (*Scalar).Negate(x *Scalar) *Scalar func (*Scalar).Set(x *Scalar) *Scalar func (*Scalar).Subtract(x, y *Scalar) *Scalar
Package-Level Functions (total 3)
NewGeneratorPoint returns a new Point set to the canonical generator.
NewIdentityPoint returns a new Point set to the identity.
NewScalar returns a new zero Scalar.