Modulus is used for modular arithmetic, precomputing relevant constants.
Moduli are assumed to be odd numbers. Moduli can also leak the exact
number of bits needed to store their value, and are stored without padding.
Their actual value is still kept secret. BitLen returns the size of m in bits. Nat returns m as a Nat. The return value must not be written to. Size returns the size of m in bytes.
func NewModulusFromBig(n *big.Int) (*Modulus, error)
func (*Nat).Add(y *Nat, m *Modulus) *Nat
func (*Nat).Bytes(m *Modulus) []byte
func (*Nat).Exp(x *Nat, e []byte, m *Modulus) *Nat
func (*Nat).ExpandFor(m *Modulus) *Nat
func (*Nat).ExpShortVarTime(x *Nat, e uint, m *Modulus) *Nat
func (*Nat).Mod(x *Nat, m *Modulus) *Nat
func (*Nat).Mul(y *Nat, m *Modulus) *Nat
func (*Nat).SetBytes(b []byte, m *Modulus) (*Nat, error)
func (*Nat).SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error)
func (*Nat).Sub(y *Nat, m *Modulus) *Nat
Nat represents an arbitrary natural number
Each Nat has an announced length, which is the number of limbs it has stored.
Operations on this number are allowed to leak this length, but will not leak
any information about the values contained in those limbs. Add computes x = x + y mod m.
The length of both operands must be the same as the modulus. Both operands
must already be reduced modulo m. Bytes returns x as a zero-extended big-endian byte slice. The size of the
slice will match the size of m.
x must have the same size as m and it must be reduced modulo m. Equal returns 1 if x == y, and 0 otherwise.
Both operands must have the same announced length. Exp calculates out = x^e mod m.
The exponent e is represented in big-endian order. The output will be resized
to the size of m and overwritten. x must already be reduced modulo m. ExpShortVarTime calculates out = x^e mod m.
The output will be resized to the size of m and overwritten. x must already
be reduced modulo m. This leaks the exponent through timing side-channels. ExpandFor ensures x has the right size to work with operations modulo m.
The announced size of x must be smaller than or equal to that of m. IsZero returns 1 if x == 0, and 0 otherwise. Mod calculates out = x mod m.
This works regardless how large the value of x is.
The output will be resized to the size of m and overwritten. Mul calculates x = x * y mod m.
The length of both operands must be the same as the modulus. Both operands
must already be reduced modulo m. SetBytes assigns x = b, where b is a slice of big-endian bytes.
SetBytes returns an error if b >= m.
The output will be resized to the size of m and overwritten. SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes.
SetOverflowingBytes returns an error if b has a longer bit length than m, but
reduces overflowing values up to 2^⌈log2(m)⌉ - 1.
The output will be resized to the size of m and overwritten. Sub computes x = x - y mod m.
The length of both operands must be the same as the modulus. Both operands
must already be reduced modulo m.
func NewNat() *Nat
func (*Modulus).Nat() *Nat
func (*Nat).Add(y *Nat, m *Modulus) *Nat
func (*Nat).Exp(x *Nat, e []byte, m *Modulus) *Nat
func (*Nat).ExpandFor(m *Modulus) *Nat
func (*Nat).ExpShortVarTime(x *Nat, e uint, m *Modulus) *Nat
func (*Nat).Mod(x *Nat, m *Modulus) *Nat
func (*Nat).Mul(y *Nat, m *Modulus) *Nat
func (*Nat).SetBytes(b []byte, m *Modulus) (*Nat, error)
func (*Nat).SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error)
func (*Nat).Sub(y *Nat, m *Modulus) *Nat
func (*Nat).Add(y *Nat, m *Modulus) *Nat
func (*Nat).Equal(y *Nat) choice
func (*Nat).Exp(x *Nat, e []byte, m *Modulus) *Nat
func (*Nat).ExpShortVarTime(x *Nat, e uint, m *Modulus) *Nat
func (*Nat).Mod(x *Nat, m *Modulus) *Nat
func (*Nat).Mul(y *Nat, m *Modulus) *Nat
func (*Nat).Sub(y *Nat, m *Modulus) *Nat
Package-Level Functions (total 2)
NewModulusFromBig creates a new Modulus from a [big.Int].
The Int must be odd. The number of significant bits (and nothing else) is
leaked through timing side-channels.
NewNat returns a new nat with a size of zero, just like new(Nat), but with
the preallocated capacity to hold a number of up to preallocTarget bits.
NewNat inlines, so the allocation can live on the stack.
The pages are generated with Goldsv0.6.9-preview. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.