package binary

Import Path
	encoding/binary (on go.dev)

Dependency Relation
	imports 5 packages, and imported by 49 packages

Involved Source Files Package binary implements simple translation between numbers and byte sequences and encoding and decoding of varints. Numbers are translated by reading and writing fixed-size values. A fixed-size value is either a fixed-size arithmetic type (bool, int8, uint8, int16, float32, complex64, ...) or an array or struct containing only fixed-size values. The varint functions encode and decode single integer values using a variable-length encoding; smaller values require fewer bytes. For a specification, see https://developers.google.com/protocol-buffers/docs/encoding. This package favors simplicity over efficiency. Clients that require high-performance serialization, especially for large data structures, should look at more advanced solutions such as the [encoding/gob] package or [google.golang.org/protobuf] for protocol buffers. native_endian_little.go varint.go
Code Examples package main import ( "encoding/binary" "fmt" ) func main() { b := []byte{0xe8, 0x03, 0xd0, 0x07} x1 := binary.LittleEndian.Uint16(b[0:]) x2 := binary.LittleEndian.Uint16(b[2:]) fmt.Printf("%#04x %#04x\n", x1, x2) } package main import ( "encoding/binary" "fmt" ) func main() { b := make([]byte, 4) binary.LittleEndian.PutUint16(b[0:], 0x03e8) binary.LittleEndian.PutUint16(b[2:], 0x07d0) fmt.Printf("% x\n", b) } package main import ( "encoding/binary" "fmt" ) func main() { buf := make([]byte, binary.MaxVarintLen64) for _, x := range []uint64{1, 2, 127, 128, 255, 256} { n := binary.PutUvarint(buf, x) fmt.Printf("%x\n", buf[:n]) } } package main import ( "encoding/binary" "fmt" ) func main() { buf := make([]byte, binary.MaxVarintLen64) for _, x := range []int64{-65, -64, -2, -1, 0, 1, 2, 63, 64} { n := binary.PutVarint(buf, x) fmt.Printf("%x\n", buf[:n]) } } package main import ( "bytes" "encoding/binary" "fmt" ) func main() { var pi float64 b := []byte{0x18, 0x2d, 0x44, 0x54, 0xfb, 0x21, 0x09, 0x40} buf := bytes.NewReader(b) err := binary.Read(buf, binary.LittleEndian, &pi) if err != nil { fmt.Println("binary.Read failed:", err) } fmt.Print(pi) } package main import ( "bytes" "encoding/binary" "fmt" ) func main() { b := []byte{0x18, 0x2d, 0x44, 0x54, 0xfb, 0x21, 0x09, 0x40, 0xff, 0x01, 0x02, 0x03, 0xbe, 0xef} r := bytes.NewReader(b) var data struct { PI float64 Uate uint8 Mine [3]byte Too uint16 } if err := binary.Read(r, binary.LittleEndian, &data); err != nil { fmt.Println("binary.Read failed:", err) } fmt.Println(data.PI) fmt.Println(data.Uate) fmt.Printf("% x\n", data.Mine) fmt.Println(data.Too) } package main import ( "encoding/binary" "fmt" ) func main() { inputs := [][]byte{ {0x01}, {0x02}, {0x7f}, {0x80, 0x01}, {0xff, 0x01}, {0x80, 0x02}, } for _, b := range inputs { x, n := binary.Uvarint(b) if n != len(b) { fmt.Println("Uvarint did not consume all of in") } fmt.Println(x) } } package main import ( "encoding/binary" "fmt" ) func main() { inputs := [][]byte{ {0x81, 0x01}, {0x7f}, {0x03}, {0x01}, {0x00}, {0x02}, {0x04}, {0x7e}, {0x80, 0x01}, } for _, b := range inputs { x, n := binary.Varint(b) if n != len(b) { fmt.Println("Varint did not consume all of in") } fmt.Println(x) } } package main import ( "bytes" "encoding/binary" "fmt" "math" ) func main() { buf := new(bytes.Buffer) var pi float64 = math.Pi err := binary.Write(buf, binary.LittleEndian, pi) if err != nil { fmt.Println("binary.Write failed:", err) } fmt.Printf("% x", buf.Bytes()) } package main import ( "bytes" "encoding/binary" "fmt" ) func main() { buf := new(bytes.Buffer) var data = []any{ uint16(61374), int8(-54), uint8(254), } for _, v := range data { err := binary.Write(buf, binary.LittleEndian, v) if err != nil { fmt.Println("binary.Write failed:", err) } } fmt.Printf("%x", buf.Bytes()) }
Package-Level Type Names (total 2)
/* sort by: | */
AppendByteOrder specifies how to append 16-, 32-, or 64-bit unsigned integers into a byte slice. It is implemented by [LittleEndian], [BigEndian], and [NativeEndian]. ( AppendByteOrder) AppendUint16([]byte, uint16) []byte ( AppendByteOrder) AppendUint32([]byte, uint32) []byte ( AppendByteOrder) AppendUint64([]byte, uint64) []byte ( AppendByteOrder) String() string AppendByteOrder : expvar.Var AppendByteOrder : fmt.Stringer
A ByteOrder specifies how to convert byte slices into 16-, 32-, or 64-bit unsigned integers. It is implemented by [LittleEndian], [BigEndian], and [NativeEndian]. ( ByteOrder) PutUint16([]byte, uint16) ( ByteOrder) PutUint32([]byte, uint32) ( ByteOrder) PutUint64([]byte, uint64) ( ByteOrder) String() string ( ByteOrder) Uint16([]byte) uint16 ( ByteOrder) Uint32([]byte) uint32 ( ByteOrder) Uint64([]byte) uint64 ByteOrder : expvar.Var ByteOrder : fmt.Stringer func debug/dwarf.(*Reader).ByteOrder() ByteOrder func Read(r io.Reader, order ByteOrder, data any) error func Write(w io.Writer, order ByteOrder, data any) error
Package-Level Functions (total 11)
AppendUvarint appends the varint-encoded form of x, as generated by [PutUvarint], to buf and returns the extended buffer.
AppendVarint appends the varint-encoded form of x, as generated by [PutVarint], to buf and returns the extended buffer.
PutUvarint encodes a uint64 into buf and returns the number of bytes written. If the buffer is too small, PutUvarint will panic.
PutVarint encodes an int64 into buf and returns the number of bytes written. If the buffer is too small, PutVarint will panic.
Read reads structured binary data from r into data. Data must be a pointer to a fixed-size value or a slice of fixed-size values. Bytes read from r are decoded using the specified byte order and written to successive fields of the data. When decoding boolean values, a zero byte is decoded as false, and any other non-zero byte is decoded as true. When reading into structs, the field data for fields with blank (_) field names is skipped; i.e., blank field names may be used for padding. When reading into a struct, all non-blank fields must be exported or Read may panic. The error is [io.EOF] only if no bytes were read. If an [io.EOF] happens after reading some but not all the bytes, Read returns [io.ErrUnexpectedEOF].
ReadUvarint reads an encoded unsigned integer from r and returns it as a uint64. The error is [io.EOF] only if no bytes were read. If an [io.EOF] happens after reading some but not all the bytes, ReadUvarint returns [io.ErrUnexpectedEOF].
ReadVarint reads an encoded signed integer from r and returns it as an int64. The error is [io.EOF] only if no bytes were read. If an [io.EOF] happens after reading some but not all the bytes, ReadVarint returns [io.ErrUnexpectedEOF].
Size returns how many bytes [Write] would generate to encode the value v, which must be a fixed-size value or a slice of fixed-size values, or a pointer to such data. If v is neither of these, Size returns -1.
Uvarint decodes a uint64 from buf and returns that value and the number of bytes read (> 0). If an error occurred, the value is 0 and the number of bytes n is <= 0 meaning: n == 0: buf too small n < 0: value larger than 64 bits (overflow) and -n is the number of bytes read
Varint decodes an int64 from buf and returns that value and the number of bytes read (> 0). If an error occurred, the value is 0 and the number of bytes n is <= 0 with the following meaning: n == 0: buf too small n < 0: value larger than 64 bits (overflow) and -n is the number of bytes read
Write writes the binary representation of data into w. Data must be a fixed-size value or a slice of fixed-size values, or a pointer to such data. Boolean values encode as one byte: 1 for true, and 0 for false. Bytes written to w are encoded using the specified byte order and read from successive fields of the data. When writing structs, zero values are written for fields with blank (_) field names.
Package-Level Variables (total 3)
BigEndian is the big-endian implementation of [ByteOrder] and [AppendByteOrder].
LittleEndian is the little-endian implementation of [ByteOrder] and [AppendByteOrder].
NativeEndian is the native-endian implementation of [ByteOrder] and [AppendByteOrder].
Package-Level Constants (total 3)
MaxVarintLenN is the maximum length of a varint-encoded N-bit integer.
MaxVarintLenN is the maximum length of a varint-encoded N-bit integer.
MaxVarintLenN is the maximum length of a varint-encoded N-bit integer.