package slices

Import Path
	slices (on go.dev)

Dependency Relation
	imports 4 packages, and imported by 52 packages

Involved Source Files iter.go Package slices defines various functions useful with slices of any type. sort.go zsortanyfunc.go zsortordered.go
Code Examples package main import ( "fmt" "slices" ) func main() { names := []string{"Alice", "Bob", "Vera"} n, found := slices.BinarySearch(names, "Vera") fmt.Println("Vera:", n, found) n, found = slices.BinarySearch(names, "Bill") fmt.Println("Bill:", n, found) } package main import ( "fmt" "slices" "strings" ) func main() { type Person struct { Name string Age int } people := []Person{ {"Alice", 55}, {"Bob", 24}, {"Gopher", 13}, } n, found := slices.BinarySearchFunc(people, Person{"Bob", 0}, func(a, b Person) int { return strings.Compare(a.Name, b.Name) }) fmt.Println("Bob:", n, found) } package main import ( "fmt" "slices" ) func main() { type Person struct { Name string Age int } type People []Person people := People{ {"Gopher", 13}, {"Alice", 20}, {"Bob", 5}, {"Vera", 24}, {"Zac", 15}, } // Chunk people into []Person 2 elements at a time. for c := range slices.Chunk(people, 2) { fmt.Println(c) } } package main import ( "fmt" "slices" ) func main() { a := [...]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} s := a[:4:10] clip := slices.Clip(s) fmt.Println(cap(s)) fmt.Println(clip) fmt.Println(len(clip)) fmt.Println(cap(clip)) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, -10, 8} clone := slices.Clone(numbers) fmt.Println(clone) clone[2] = 10 fmt.Println(numbers) } package main import ( "fmt" "slices" ) func main() { seq := []int{0, 1, 1, 2, 3, 5, 8} seq = slices.Compact(seq) fmt.Println(seq) } package main import ( "fmt" "slices" "strings" ) func main() { names := []string{"bob", "Bob", "alice", "Vera", "VERA"} names = slices.CompactFunc(names, strings.EqualFold) fmt.Println(names) } package main import ( "fmt" "slices" ) func main() { names := []string{"Alice", "Bob", "Vera"} fmt.Println("Equal:", slices.Compare(names, []string{"Alice", "Bob", "Vera"})) fmt.Println("V < X:", slices.Compare(names, []string{"Alice", "Bob", "Xena"})) fmt.Println("V > C:", slices.Compare(names, []string{"Alice", "Bob", "Cat"})) fmt.Println("3 > 2:", slices.Compare(names, []string{"Alice", "Bob"})) } package main import ( "cmp" "fmt" "slices" "strconv" ) func main() { numbers := []int{0, 43, 8} strings := []string{"0", "0", "8"} result := slices.CompareFunc(numbers, strings, func(n int, s string) int { sn, err := strconv.Atoi(s) if err != nil { return 1 } return cmp.Compare(n, sn) }) fmt.Println(result) } package main import ( "fmt" "slices" ) func main() { s1 := []int{0, 1, 2, 3} s2 := []int{4, 5, 6} concat := slices.Concat(s1, s2) fmt.Println(concat) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 1, 2, 3} fmt.Println(slices.Contains(numbers, 2)) fmt.Println(slices.Contains(numbers, 4)) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, -10, 8} hasNegative := slices.ContainsFunc(numbers, func(n int) bool { return n < 0 }) fmt.Println("Has a negative:", hasNegative) hasOdd := slices.ContainsFunc(numbers, func(n int) bool { return n%2 != 0 }) fmt.Println("Has an odd number:", hasOdd) } package main import ( "fmt" "slices" ) func main() { letters := []string{"a", "b", "c", "d", "e"} letters = slices.Delete(letters, 1, 4) fmt.Println(letters) } package main import ( "fmt" "slices" ) func main() { seq := []int{0, 1, 1, 2, 3, 5, 8} seq = slices.DeleteFunc(seq, func(n int) bool { return n%2 != 0 // delete the odd numbers }) fmt.Println(seq) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, 8} fmt.Println(slices.Equal(numbers, []int{0, 42, 8})) fmt.Println(slices.Equal(numbers, []int{10})) } package main import ( "fmt" "slices" "strconv" ) func main() { numbers := []int{0, 42, 8} strings := []string{"000", "42", "0o10"} equal := slices.EqualFunc(numbers, strings, func(n int, s string) bool { sn, err := strconv.ParseInt(s, 0, 64) if err != nil { return false } return n == int(sn) }) fmt.Println(equal) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, -10, 8} grow := slices.Grow(numbers, 2) fmt.Println(cap(numbers)) fmt.Println(grow) fmt.Println(len(grow)) fmt.Println(cap(grow)) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, 8} fmt.Println(slices.Index(numbers, 8)) fmt.Println(slices.Index(numbers, 7)) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, -10, 8} i := slices.IndexFunc(numbers, func(n int) bool { return n < 0 }) fmt.Println("First negative at index", i) } package main import ( "fmt" "slices" ) func main() { names := []string{"Alice", "Bob", "Vera"} names = slices.Insert(names, 1, "Bill", "Billie") names = slices.Insert(names, len(names), "Zac") fmt.Println(names) } package main import ( "fmt" "slices" ) func main() { fmt.Println(slices.IsSorted([]string{"Alice", "Bob", "Vera"})) fmt.Println(slices.IsSorted([]int{0, 2, 1})) } package main import ( "fmt" "slices" "strings" ) func main() { names := []string{"alice", "Bob", "VERA"} isSortedInsensitive := slices.IsSortedFunc(names, func(a, b string) int { return strings.Compare(strings.ToLower(a), strings.ToLower(b)) }) fmt.Println(isSortedInsensitive) fmt.Println(slices.IsSorted(names)) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, -10, 8} fmt.Println(slices.Max(numbers)) } package main import ( "cmp" "fmt" "slices" ) func main() { type Person struct { Name string Age int } people := []Person{ {"Gopher", 13}, {"Alice", 55}, {"Vera", 24}, {"Bob", 55}, } firstOldest := slices.MaxFunc(people, func(a, b Person) int { return cmp.Compare(a.Age, b.Age) }) fmt.Println(firstOldest.Name) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 42, -10, 8} fmt.Println(slices.Min(numbers)) } package main import ( "cmp" "fmt" "slices" ) func main() { type Person struct { Name string Age int } people := []Person{ {"Gopher", 13}, {"Bob", 5}, {"Vera", 24}, {"Bill", 5}, } firstYoungest := slices.MinFunc(people, func(a, b Person) int { return cmp.Compare(a.Age, b.Age) }) fmt.Println(firstYoungest.Name) } package main import ( "fmt" "slices" ) func main() { numbers := []int{0, 1, 2, 3} repeat := slices.Repeat(numbers, 2) fmt.Println(repeat) } package main import ( "fmt" "slices" ) func main() { names := []string{"Alice", "Bob", "Vera", "Zac"} names = slices.Replace(names, 1, 3, "Bill", "Billie", "Cat") fmt.Println(names) } package main import ( "fmt" "slices" ) func main() { names := []string{"alice", "Bob", "VERA"} slices.Reverse(names) fmt.Println(names) } package main import ( "fmt" "slices" ) func main() { smallInts := []int8{0, 42, -10, 8} slices.Sort(smallInts) fmt.Println(smallInts) } package main import ( "fmt" "slices" "strings" ) func main() { names := []string{"Bob", "alice", "VERA"} slices.SortFunc(names, func(a, b string) int { return strings.Compare(strings.ToLower(a), strings.ToLower(b)) }) fmt.Println(names) } package main import ( "cmp" "fmt" "slices" "strings" ) func main() { type Person struct { Name string Age int } people := []Person{ {"Gopher", 13}, {"Alice", 55}, {"Bob", 24}, {"Alice", 20}, } slices.SortFunc(people, func(a, b Person) int { if n := strings.Compare(a.Name, b.Name); n != 0 { return n } // If names are equal, order by age return cmp.Compare(a.Age, b.Age) }) fmt.Println(people) } package main import ( "fmt" "slices" "strings" ) func main() { type Person struct { Name string Age int } people := []Person{ {"Gopher", 13}, {"Alice", 20}, {"Bob", 24}, {"Alice", 55}, } // Stable sort by name, keeping age ordering of Alices intact slices.SortStableFunc(people, func(a, b Person) int { return strings.Compare(a.Name, b.Name) }) fmt.Println(people) }
Package-Level Functions (total 40)
Type Parameters: Slice: ~[]E E: any All returns an iterator over index-value pairs in the slice in the usual order.
Type Parameters: Slice: ~[]E E: any AppendSeq appends the values from seq to the slice and returns the extended slice.
Type Parameters: Slice: ~[]E E: any Backward returns an iterator over index-value pairs in the slice, traversing it backward with descending indices.
Type Parameters: S: ~[]E E: cmp.Ordered BinarySearch searches for target in a sorted slice and returns the earliest position where target is found, or the position where target would appear in the sort order; it also returns a bool saying whether the target is really found in the slice. The slice must be sorted in increasing order.
Type Parameters: S: ~[]E E: any T: any BinarySearchFunc works like [BinarySearch], but uses a custom comparison function. The slice must be sorted in increasing order, where "increasing" is defined by cmp. cmp should return 0 if the slice element matches the target, a negative number if the slice element precedes the target, or a positive number if the slice element follows the target. cmp must implement the same ordering as the slice, such that if cmp(a, t) < 0 and cmp(b, t) >= 0, then a must precede b in the slice.
Type Parameters: Slice: ~[]E E: any Chunk returns an iterator over consecutive sub-slices of up to n elements of s. All but the last sub-slice will have size n. All sub-slices are clipped to have no capacity beyond the length. If s is empty, the sequence is empty: there is no empty slice in the sequence. Chunk panics if n is less than 1.
Type Parameters: S: ~[]E E: any Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
Type Parameters: S: ~[]E E: any Clone returns a copy of the slice. The elements are copied using assignment, so this is a shallow clone. The result may have additional unused capacity.
Type Parameters: E: any Collect collects values from seq into a new slice and returns it.
Type Parameters: S: ~[]E E: comparable Compact replaces consecutive runs of equal elements with a single copy. This is like the uniq command found on Unix. Compact modifies the contents of the slice s and returns the modified slice, which may have a smaller length. Compact zeroes the elements between the new length and the original length.
Type Parameters: S: ~[]E E: any CompactFunc is like [Compact] but uses an equality function to compare elements. For runs of elements that compare equal, CompactFunc keeps the first one. CompactFunc zeroes the elements between the new length and the original length.
Type Parameters: S: ~[]E E: cmp.Ordered Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair of elements. The elements are compared sequentially, starting at index 0, until one element is not equal to the other. The result of comparing the first non-matching elements is returned. If both slices are equal until one of them ends, the shorter slice is considered less than the longer one. The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
Type Parameters: S1: ~[]E1 S2: ~[]E2 E1: any E2: any CompareFunc is like [Compare] but uses a custom comparison function on each pair of elements. The result is the first non-zero result of cmp; if cmp always returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2), and +1 if len(s1) > len(s2).
Type Parameters: S: ~[]E E: any Concat returns a new slice concatenating the passed in slices.
Type Parameters: S: ~[]E E: comparable Contains reports whether v is present in s.
Type Parameters: S: ~[]E E: any ContainsFunc reports whether at least one element e of s satisfies f(e).
Type Parameters: S: ~[]E E: any Delete removes the elements s[i:j] from s, returning the modified slice. Delete panics if j > len(s) or s[i:j] is not a valid slice of s. Delete is O(len(s)-i), so if many items must be deleted, it is better to make a single call deleting them all together than to delete one at a time. Delete zeroes the elements s[len(s)-(j-i):len(s)].
Type Parameters: S: ~[]E E: any DeleteFunc removes any elements from s for which del returns true, returning the modified slice. DeleteFunc zeroes the elements between the new length and the original length.
Type Parameters: S: ~[]E E: comparable Equal reports whether two slices are equal: the same length and all elements equal. If the lengths are different, Equal returns false. Otherwise, the elements are compared in increasing index order, and the comparison stops at the first unequal pair. Floating point NaNs are not considered equal.
Type Parameters: S1: ~[]E1 S2: ~[]E2 E1: any E2: any EqualFunc reports whether two slices are equal using an equality function on each pair of elements. If the lengths are different, EqualFunc returns false. Otherwise, the elements are compared in increasing index order, and the comparison stops at the first index for which eq returns false.
Type Parameters: S: ~[]E E: any Grow increases the slice's capacity, if necessary, to guarantee space for another n elements. After Grow(n), at least n elements can be appended to the slice without another allocation. If n is negative or too large to allocate the memory, Grow panics.
Type Parameters: S: ~[]E E: comparable Index returns the index of the first occurrence of v in s, or -1 if not present.
Type Parameters: S: ~[]E E: any IndexFunc returns the first index i satisfying f(s[i]), or -1 if none do.
Type Parameters: S: ~[]E E: any Insert inserts the values v... into s at index i, returning the modified slice. The elements at s[i:] are shifted up to make room. In the returned slice r, r[i] == v[0], and r[i+len(v)] == value originally at r[i]. Insert panics if i is out of range. This function is O(len(s) + len(v)).
Type Parameters: S: ~[]E E: cmp.Ordered IsSorted reports whether x is sorted in ascending order.
Type Parameters: S: ~[]E E: any IsSortedFunc reports whether x is sorted in ascending order, with cmp as the comparison function as defined by [SortFunc].
Type Parameters: S: ~[]E E: cmp.Ordered Max returns the maximal value in x. It panics if x is empty. For floating-point E, Max propagates NaNs (any NaN value in x forces the output to be NaN).
Type Parameters: S: ~[]E E: any MaxFunc returns the maximal value in x, using cmp to compare elements. It panics if x is empty. If there is more than one maximal element according to the cmp function, MaxFunc returns the first one.
Type Parameters: S: ~[]E E: cmp.Ordered Min returns the minimal value in x. It panics if x is empty. For floating-point numbers, Min propagates NaNs (any NaN value in x forces the output to be NaN).
Type Parameters: S: ~[]E E: any MinFunc returns the minimal value in x, using cmp to compare elements. It panics if x is empty. If there is more than one minimal element according to the cmp function, MinFunc returns the first one.
Type Parameters: S: ~[]E E: any Repeat returns a new slice that repeats the provided slice the given number of times. The result has length and capacity (len(x) * count). The result is never nil. Repeat panics if count is negative or if the result of (len(x) * count) overflows.
Type Parameters: S: ~[]E E: any Replace replaces the elements s[i:j] by the given v, and returns the modified slice. Replace panics if j > len(s) or s[i:j] is not a valid slice of s. When len(v) < (j-i), Replace zeroes the elements between the new length and the original length.
Type Parameters: S: ~[]E E: any Reverse reverses the elements of the slice in place.
Type Parameters: S: ~[]E E: cmp.Ordered Sort sorts a slice of any ordered type in ascending order. When sorting floating-point numbers, NaNs are ordered before other values.
Type Parameters: E: cmp.Ordered Sorted collects values from seq into a new slice, sorts the slice, and returns it.
Type Parameters: E: any SortedFunc collects values from seq into a new slice, sorts the slice using the comparison function, and returns it.
Type Parameters: E: any SortedStableFunc collects values from seq into a new slice. It then sorts the slice while keeping the original order of equal elements, using the comparison function to compare elements. It returns the new slice.
Type Parameters: S: ~[]E E: any SortFunc sorts the slice x in ascending order as determined by the cmp function. This sort is not guaranteed to be stable. cmp(a, b) should return a negative number when a < b, a positive number when a > b and zero when a == b or a and b are incomparable in the sense of a strict weak ordering. SortFunc requires that cmp is a strict weak ordering. See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings. The function should return 0 for incomparable items.
Type Parameters: S: ~[]E E: any SortStableFunc sorts the slice x while keeping the original order of equal elements, using cmp to compare elements in the same way as [SortFunc].
Type Parameters: Slice: ~[]E E: any Values returns an iterator that yields the slice elements in order.