// Copyright (c) 2019 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package edwards25519import// basepointTable is a set of 32 affineLookupTables, where table i is generated// from 256i * basepoint. It is precomputed the first time it's used.func basepointTable() *[32]affineLookupTable {basepointTablePrecomp.initOnce.Do(func() { := NewGeneratorPoint()for := 0; < 32; ++ {basepointTablePrecomp.table[].FromP3()for := 0; < 8; ++ { .Add(, ) } } })return &basepointTablePrecomp.table}var basepointTablePrecomp struct { table [32]affineLookupTable initOnce sync.Once}// ScalarBaseMult sets v = x * B, where B is the canonical generator, and// returns v.//// The scalar multiplication is done in constant time.func ( *Point) ( *Scalar) *Point { := basepointTable()// Write x = sum(x_i * 16^i) so x*B = sum( B*x_i*16^i ) // as described in the Ed25519 paper // // Group even and odd coefficients // x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B // + x_1*16^1*B + x_3*16^3*B + ... + x_63*16^63*B // x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B // + 16*( x_1*16^0*B + x_3*16^2*B + ... + x_63*16^62*B) // // We use a lookup table for each i to get x_i*16^(2*i)*B // and do four doublings to multiply by 16. := .signedRadix16() := &affineCached{} := &projP1xP1{} := &projP2{}// Accumulate the odd components first .Set(NewIdentityPoint())for := 1; < 64; += 2 { [/2].SelectInto(, []) .AddAffine(, ) .fromP1xP1() }// Multiply by 16 .FromP3() // tmp2 = v in P2 coords .Double() // tmp1 = 2*v in P1xP1 coords .FromP1xP1() // tmp2 = 2*v in P2 coords .Double() // tmp1 = 4*v in P1xP1 coords .FromP1xP1() // tmp2 = 4*v in P2 coords .Double() // tmp1 = 8*v in P1xP1 coords .FromP1xP1() // tmp2 = 8*v in P2 coords .Double() // tmp1 = 16*v in P1xP1 coords .fromP1xP1() // now v = 16*(odd components)// Accumulate the even componentsfor := 0; < 64; += 2 { [/2].SelectInto(, []) .AddAffine(, ) .fromP1xP1() }return}// ScalarMult sets v = x * q, and returns v.//// The scalar multiplication is done in constant time.func ( *Point) ( *Scalar, *Point) *Point {checkInitialized()varprojLookupTable .FromP3()// Write x = sum(x_i * 16^i) // so x*Q = sum( Q*x_i*16^i ) // = Q*x_0 + 16*(Q*x_1 + 16*( ... + Q*x_63) ... ) // <------compute inside out--------- // // We use the lookup table to get the x_i*Q values // and do four doublings to compute 16*Q := .signedRadix16()// Unwrap first loop iteration to save computing 16*identity := &projCached{} := &projP1xP1{} := &projP2{} .SelectInto(, [63]) .Set(NewIdentityPoint()) .Add(, ) // tmp1 = x_63*Q in P1xP1 coordsfor := 62; >= 0; -- { .FromP1xP1() // tmp2 = (prev) in P2 coords .Double() // tmp1 = 2*(prev) in P1xP1 coords .FromP1xP1() // tmp2 = 2*(prev) in P2 coords .Double() // tmp1 = 4*(prev) in P1xP1 coords .FromP1xP1() // tmp2 = 4*(prev) in P2 coords .Double() // tmp1 = 8*(prev) in P1xP1 coords .FromP1xP1() // tmp2 = 8*(prev) in P2 coords .Double() // tmp1 = 16*(prev) in P1xP1 coords .fromP1xP1() // v = 16*(prev) in P3 coords .SelectInto(, []) .Add(, ) // tmp1 = x_i*Q + 16*(prev) in P1xP1 coords } .fromP1xP1()return}// basepointNafTable is the nafLookupTable8 for the basepoint.// It is precomputed the first time it's used.func basepointNafTable() *nafLookupTable8 {basepointNafTablePrecomp.initOnce.Do(func() {basepointNafTablePrecomp.table.FromP3(NewGeneratorPoint()) })return &basepointNafTablePrecomp.table}var basepointNafTablePrecomp struct { table nafLookupTable8 initOnce sync.Once}// VarTimeDoubleScalarBaseMult sets v = a * A + b * B, where B is the canonical// generator, and returns v.//// Execution time depends on the inputs.func ( *Point) ( *Scalar, *Point, *Scalar) *Point {checkInitialized()// Similarly to the single variable-base approach, we compute // digits and use them with a lookup table. However, because // we are allowed to do variable-time operations, we don't // need constant-time lookups or constant-time digit // computations. // // So we use a non-adjacent form of some width w instead of // radix 16. This is like a binary representation (one digit // for each binary place) but we allow the digits to grow in // magnitude up to 2^{w-1} so that the nonzero digits are as // sparse as possible. Intuitively, this "condenses" the // "mass" of the scalar onto sparse coefficients (meaning // fewer additions). := basepointNafTable()varnafLookupTable5 .FromP3()// Because the basepoint is fixed, we can use a wider NAF // corresponding to a bigger table. := .nonAdjacentForm(5) := .nonAdjacentForm(8)// Find the first nonzero coefficient. := 255for := ; >= 0; -- {if [] != 0 || [] != 0 {break } } := &projCached{} := &affineCached{} := &projP1xP1{} := &projP2{} .Zero()// Move from high to low bits, doubling the accumulator // at each iteration and checking whether there is a nonzero // coefficient to look up a multiple of.for ; >= 0; -- { .Double()// Only update v if we have a nonzero coeff to add in.if [] > 0 { .fromP1xP1() .SelectInto(, []) .Add(, ) } elseif [] < 0 { .fromP1xP1() .SelectInto(, -[]) .Sub(, ) }if [] > 0 { .fromP1xP1() .SelectInto(, []) .AddAffine(, ) } elseif [] < 0 { .fromP1xP1() .SelectInto(, -[]) .SubAffine(, ) } .FromP1xP1() } .fromP2()return}
The pages are generated with Goldsv0.7.3-preview. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.