// Copyright 2022 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package nistecimport ()var p224GG *[96]fiat.P224Elementvar p224GGOnce sync.Once// p224SqrtCandidate sets r to a square root candidate for x. r and x must not overlap.func p224SqrtCandidate(, *fiat.P224Element) {// Since p = 1 mod 4, we can't use the exponentiation by (p + 1) / 4 like // for the other primes. Instead, implement a variation of Tonelli–Shanks. // The constant-time implementation is adapted from Thomas Pornin's ecGFp5. // // https://github.com/pornin/ecgfp5/blob/82325b965/rust/src/field.rs#L337-L385// p = q*2^n + 1 with q odd -> q = 2^128 - 1 and n = 96 // g^(2^n) = 1 -> g = 11 ^ q (where 11 is the smallest non-square) // GG[j] = g^(2^j) for j = 0 to n-1p224GGOnce.Do(func() {p224GG = new([96]fiat.P224Element)for := rangep224GG {if == 0 {p224GG[].SetBytes([]byte{0x6a, 0x0f, 0xec, 0x67,0x85, 0x98, 0xa7, 0x92, 0x0c, 0x55, 0xb2, 0xd4,0x0b, 0x2d, 0x6f, 0xfb, 0xbe, 0xa3, 0xd8, 0xce,0xf3, 0xfb, 0x36, 0x32, 0xdc, 0x69, 0x1b, 0x74}) } else {p224GG[].Square(&p224GG[-1]) } } })// r <- x^((q+1)/2) = x^(2^127) // v <- x^q = x^(2^128-1)// Compute x^(2^127-1) first. // // The sequence of 10 multiplications and 126 squarings is derived from the // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. // // _10 = 2*1 // _11 = 1 + _10 // _110 = 2*_11 // _111 = 1 + _110 // _111000 = _111 << 3 // _111111 = _111 + _111000 // _1111110 = 2*_111111 // _1111111 = 1 + _1111110 // x12 = _1111110 << 5 + _111111 // x24 = x12 << 12 + x12 // i36 = x24 << 7 // x31 = _1111111 + i36 // x48 = i36 << 17 + x24 // x96 = x48 << 48 + x48 // return x96 << 31 + x31 //var = new(fiat.P224Element)var = new(fiat.P224Element) .Square() .Mul(, ) .Square() .Mul(, ) .Square()for := 1; < 3; ++ { .Square() } .Mul(, ) .Square() .Mul(, )for := 0; < 5; ++ { .Square() } .Mul(, ) .Square()for := 1; < 12; ++ { .Square() } .Mul(, ) .Square()for := 1; < 7; ++ { .Square() } .Mul(, )for := 0; < 17; ++ { .Square() } .Mul(, ) .Square()for := 1; < 48; ++ { .Square() } .Mul(, )for := 0; < 31; ++ { .Square() } .Mul(, )// v = x^(2^127-1)^2 * x := new(fiat.P224Element).Square() .Mul(, )// r = x^(2^127-1) * x .Mul(, )// for i = n-1 down to 1: // w = v^(2^(i-1)) // if w == -1 then: // v <- v*GG[n-i] // r <- r*GG[n-i-1]var = new(fiat.P224Element).Sub(new(fiat.P224Element), new(fiat.P224Element).One())for := 96 - 1; >= 1; -- { := new(fiat.P224Element).Set()for := 0; < -1; ++ { .Square() } := .Equal() .Select(.Mul(, &p224GG[96-]), , ) .Select(.Mul(, &p224GG[96--1]), , ) }}
The pages are generated with Goldsv0.7.3-preview. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.