// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package jpegimport ()// div returns a/b rounded to the nearest integer, instead of rounded to zero.func div(, int32) int32 {if >= 0 {return ( + ( >> 1)) / }return -((- + ( >> 1)) / )}// bitCount counts the number of bits needed to hold an integer.var bitCount = [256]byte{0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,}type quantIndex intconst ( quantIndexLuminance quantIndex = iota quantIndexChrominance nQuantIndex)// unscaledQuant are the unscaled quantization tables in zig-zag order. Each// encoder copies and scales the tables according to its quality parameter.// The values are derived from section K.1 of the spec, after converting from// natural to zig-zag order.var unscaledQuant = [nQuantIndex][blockSize]byte{// Luminance. {16, 11, 12, 14, 12, 10, 16, 14,13, 14, 18, 17, 16, 19, 24, 40,26, 24, 22, 22, 24, 49, 35, 37,29, 40, 58, 51, 61, 60, 57, 51,56, 55, 64, 72, 92, 78, 64, 68,87, 69, 55, 56, 80, 109, 81, 87,95, 98, 103, 104, 103, 62, 77, 113,121, 112, 100, 120, 92, 101, 103, 99, },// Chrominance. {17, 18, 18, 24, 21, 24, 47, 26,26, 47, 99, 66, 56, 66, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99,99, 99, 99, 99, 99, 99, 99, 99, },}type huffIndex intconst ( huffIndexLuminanceDC huffIndex = iota huffIndexLuminanceAC huffIndexChrominanceDC huffIndexChrominanceAC nHuffIndex)// huffmanSpec specifies a Huffman encoding.type huffmanSpec struct {// count[i] is the number of codes of length i+1 bits. count [16]byte// value[i] is the decoded value of the i'th codeword. value []byte}// theHuffmanSpec is the Huffman encoding specifications.//// This encoder uses the same Huffman encoding for all images. It is also the// same Huffman encoding used by section K.3 of the spec.//// The DC tables have 12 decoded values, called categories.//// The AC tables have 162 decoded values: bytes that pack a 4-bit Run and a// 4-bit Size. There are 16 valid Runs and 10 valid Sizes, plus two special R|S// cases: 0|0 (meaning EOB) and F|0 (meaning ZRL).var theHuffmanSpec = [nHuffIndex]huffmanSpec{// Luminance DC. { [16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}, []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, },// Luminance AC. { [16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125}, []byte{0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,0xf9, 0xfa, }, },// Chrominance DC. { [16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}, []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, },// Chrominance AC. { [16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119}, []byte{0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,0xf9, 0xfa, }, },}// huffmanLUT is a compiled look-up table representation of a huffmanSpec.// Each value maps to a uint32 of which the 8 most significant bits hold the// codeword size in bits and the 24 least significant bits hold the codeword.// The maximum codeword size is 16 bits.type huffmanLUT []uint32func ( *huffmanLUT) ( huffmanSpec) { := 0for , := range .value {ifint() > { = int() } } * = make([]uint32, +1) , := uint32(0), 0for := 0; < len(.count); ++ { := uint32(+1) << 24for := uint8(0); < .count[]; ++ { (*)[.value[]] = | ++ ++ } <<= 1 }}// theHuffmanLUT are compiled representations of theHuffmanSpec.var theHuffmanLUT [4]huffmanLUTfunc init() {for , := rangetheHuffmanSpec {theHuffmanLUT[].init() }}// writer is a buffered writer.type writer interface { Flush() errorio.Writerio.ByteWriter}// encoder encodes an image to the JPEG format.type encoder struct {// w is the writer to write to. err is the first error encountered during // writing. All attempted writes after the first error become no-ops. w writer err error// buf is a scratch buffer. buf [16]byte// bits and nBits are accumulated bits to write to w. bits, nBits uint32// quant is the scaled quantization tables, in zig-zag order. quant [nQuantIndex][blockSize]byte}func ( *encoder) () {if .err != nil {return } .err = .w.Flush()}func ( *encoder) ( []byte) {if .err != nil {return } _, .err = .w.Write()}func ( *encoder) ( byte) {if .err != nil {return } .err = .w.WriteByte()}// emit emits the least significant nBits bits of bits to the bit-stream.// The precondition is bits < 1<<nBits && nBits <= 16.func ( *encoder) (, uint32) { += .nBits <<= 32 - |= .bitsfor >= 8 { := uint8( >> 24) .writeByte()if == 0xff { .writeByte(0x00) } <<= 8 -= 8 } .bits, .nBits = , }// emitHuff emits the given value with the given Huffman encoder.func ( *encoder) ( huffIndex, int32) { := theHuffmanLUT[][] .emit(&(1<<24-1), >>24)}// emitHuffRLE emits a run of runLength copies of value encoded with the given// Huffman encoder.func ( *encoder) ( huffIndex, , int32) { , := , if < 0 { , = -, -1 }varuint32if < 0x100 { = uint32(bitCount[]) } else { = 8 + uint32(bitCount[>>8]) } .emitHuff(, <<4|int32())if > 0 { .emit(uint32()&(1<<-1), ) }}// writeMarkerHeader writes the header for a marker with the given length.func ( *encoder) ( uint8, int) { .buf[0] = 0xff .buf[1] = .buf[2] = uint8( >> 8) .buf[3] = uint8( & 0xff) .write(.buf[:4])}// writeDQT writes the Define Quantization Table marker.func ( *encoder) () {const = 2 + int(nQuantIndex)*(1+blockSize) .writeMarkerHeader(dqtMarker, )for := range .quant { .writeByte(uint8()) .write(.quant[][:]) }}// writeSOF0 writes the Start Of Frame (Baseline Sequential) marker.func ( *encoder) ( image.Point, int) { := 8 + 3* .writeMarkerHeader(sof0Marker, ) .buf[0] = 8// 8-bit color. .buf[1] = uint8(.Y >> 8) .buf[2] = uint8(.Y & 0xff) .buf[3] = uint8(.X >> 8) .buf[4] = uint8(.X & 0xff) .buf[5] = uint8()if == 1 { .buf[6] = 1// No subsampling for grayscale image. .buf[7] = 0x11 .buf[8] = 0x00 } else {for := 0; < ; ++ { .buf[3*+6] = uint8( + 1)// We use 4:2:0 chroma subsampling. .buf[3*+7] = "\x22\x11\x11"[] .buf[3*+8] = "\x00\x01\x01"[] } } .write(.buf[:3*(-1)+9])}// writeDHT writes the Define Huffman Table marker.func ( *encoder) ( int) { := 2 := theHuffmanSpec[:]if == 1 {// Drop the Chrominance tables. = [:2] }for , := range { += 1 + 16 + len(.value) } .writeMarkerHeader(dhtMarker, )for , := range { .writeByte("\x00\x10\x01\x11"[]) .write(.count[:]) .write(.value) }}// writeBlock writes a block of pixel data using the given quantization table,// returning the post-quantized DC value of the DCT-transformed block. b is in// natural (not zig-zag) order.func ( *encoder) ( *block, quantIndex, int32) int32 {fdct()// Emit the DC delta. := div([0], 8*int32(.quant[][0])) .emitHuffRLE(huffIndex(2*+0), 0, -)// Emit the AC components. , := huffIndex(2*+1), int32(0)for := 1; < blockSize; ++ { := div([unzig[]], 8*int32(.quant[][]))if == 0 { ++ } else {for > 15 { .emitHuff(, 0xf0) -= 16 } .emitHuffRLE(, , ) = 0 } }if > 0 { .emitHuff(, 0x00) }return}// toYCbCr converts the 8x8 region of m whose top-left corner is p to its// YCbCr values.func toYCbCr( image.Image, image.Point, , , *block) { := .Bounds() := .Max.X - 1 := .Max.Y - 1for := 0; < 8; ++ {for := 0; < 8; ++ { , , , := .At(min(.X+, ), min(.Y+, )).RGBA() , , := color.RGBToYCbCr(uint8(>>8), uint8(>>8), uint8(>>8)) [8*+] = int32() [8*+] = int32() [8*+] = int32() } }}// grayToY stores the 8x8 region of m whose top-left corner is p in yBlock.func grayToY( *image.Gray, image.Point, *block) { := .Bounds() := .Max.X - 1 := .Max.Y - 1 := .Pixfor := 0; < 8; ++ {for := 0; < 8; ++ { := .PixOffset(min(.X+, ), min(.Y+, )) [8*+] = int32([]) } }}// rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images.func rgbaToYCbCr( *image.RGBA, image.Point, , , *block) { := .Bounds() := .Max.X - 1 := .Max.Y - 1for := 0; < 8; ++ { := .Y + if > { = } := (-.Min.Y)*.Stride - .Min.X*4for := 0; < 8; ++ { := .X + if > { = } := .Pix[+*4:] , , := color.RGBToYCbCr([0], [1], [2]) [8*+] = int32() [8*+] = int32() [8*+] = int32() } }}// yCbCrToYCbCr is a specialized version of toYCbCr for image.YCbCr images.func yCbCrToYCbCr( *image.YCbCr, image.Point, , , *block) { := .Bounds() := .Max.X - 1 := .Max.Y - 1for := 0; < 8; ++ { := .Y + if > { = }for := 0; < 8; ++ { := .X + if > { = } := .YOffset(, ) := .COffset(, ) [8*+] = int32(.Y[]) [8*+] = int32(.Cb[]) [8*+] = int32(.Cr[]) } }}// scale scales the 16x16 region represented by the 4 src blocks to the 8x8// dst block.func scale( *block, *[4]block) {for := 0; < 4; ++ { := (&2)<<4 | (&1)<<2for := 0; < 4; ++ {for := 0; < 4; ++ { := 16* + 2* := [][] + [][+1] + [][+8] + [][+9] [8*++] = ( + 2) >> 2 } } }}// sosHeaderY is the SOS marker "\xff\xda" followed by 8 bytes:// - the marker length "\x00\x08",// - the number of components "\x01",// - component 1 uses DC table 0 and AC table 0 "\x01\x00",// - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for// sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al)// should be 0x00, 0x3f, 0x00<<4 | 0x00.var sosHeaderY = []byte{0xff, 0xda, 0x00, 0x08, 0x01, 0x01, 0x00, 0x00, 0x3f, 0x00,}// sosHeaderYCbCr is the SOS marker "\xff\xda" followed by 12 bytes:// - the marker length "\x00\x0c",// - the number of components "\x03",// - component 1 uses DC table 0 and AC table 0 "\x01\x00",// - component 2 uses DC table 1 and AC table 1 "\x02\x11",// - component 3 uses DC table 1 and AC table 1 "\x03\x11",// - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for// sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al)// should be 0x00, 0x3f, 0x00<<4 | 0x00.var sosHeaderYCbCr = []byte{0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02,0x11, 0x03, 0x11, 0x00, 0x3f, 0x00,}// writeSOS writes the StartOfScan marker.func ( *encoder) ( image.Image) {switch .(type) {case *image.Gray: .write(sosHeaderY)default: .write(sosHeaderYCbCr) }var (// Scratch buffers to hold the YCbCr values. // The blocks are in natural (not zig-zag) order.block , [4]block// DC components are delta-encoded. , , int32 ) := .Bounds()switch m := .(type) {// TODO(wathiede): switch on m.ColorModel() instead of type.case *image.Gray:for := .Min.Y; < .Max.Y; += 8 {for := .Min.X; < .Max.X; += 8 { := image.Pt(, )grayToY(, , &) = .writeBlock(&, 0, ) } }default: , := .(*image.RGBA) , := .(*image.YCbCr)for := .Min.Y; < .Max.Y; += 16 {for := .Min.X; < .Max.X; += 16 {for := 0; < 4; ++ { := ( & 1) * 8 := ( & 2) * 4 := image.Pt(+, +)if != nil {rgbaToYCbCr(, , &, &[], &[]) } elseif != nil {yCbCrToYCbCr(, , &, &[], &[]) } else {toYCbCr(, , &, &[], &[]) } = .writeBlock(&, 0, ) }scale(&, &) = .writeBlock(&, 1, )scale(&, &) = .writeBlock(&, 1, ) } } }// Pad the last byte with 1's. .emit(0x7f, 7)}// DefaultQuality is the default quality encoding parameter.constDefaultQuality = 75// Options are the encoding parameters.// Quality ranges from 1 to 100 inclusive, higher is better.typeOptionsstruct { Quality int}// Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given// options. Default parameters are used if a nil *[Options] is passed.func ( io.Writer, image.Image, *Options) error { := .Bounds()if .Dx() >= 1<<16 || .Dy() >= 1<<16 {returnerrors.New("jpeg: image is too large to encode") }varencoderif , := .(writer); { .w = } else { .w = bufio.NewWriter() }// Clip quality to [1, 100]. := DefaultQualityif != nil { = .Qualityif < 1 { = 1 } elseif > 100 { = 100 } }// Convert from a quality rating to a scaling factor.varintif < 50 { = 5000 / } else { = 200 - *2 }// Initialize the quantization tables.for := range .quant {for := range .quant[] { := int(unscaledQuant[][]) = (* + 50) / 100if < 1 { = 1 } elseif > 255 { = 255 } .quant[][] = uint8() } }// Compute number of components based on input image type. := 3switch .(type) {// TODO(wathiede): switch on m.ColorModel() instead of type.case *image.Gray: = 1 }// Write the Start Of Image marker. .buf[0] = 0xff .buf[1] = 0xd8 .write(.buf[:2])// Write the quantization tables. .writeDQT()// Write the image dimensions. .writeSOF0(.Size(), )// Write the Huffman tables. .writeDHT()// Write the image data. .writeSOS()// Write the End Of Image marker. .buf[0] = 0xff .buf[1] = 0xd9 .write(.buf[:2]) .flush()return .err}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.