Source File
cgroup_linux.go
Belonging Package
internal/runtime/cgroup
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cgroup
import (
)
var (
ErrNoCgroup error = stringError("not in a cgroup")
errMalformedFile error = stringError("malformed file")
)
const _PATH_MAX = 4096
const (
// Required amount of scratch space for CPULimit.
//
// TODO(prattmic): This is shockingly large (~70KiB) due to the (very
// unlikely) combination of extremely long paths consisting mostly
// escaped characters. The scratch buffer ends up in .bss in package
// runtime, so it doesn't contribute to binary size and generally won't
// be faulted in, but it would still be nice to shrink this. A more
// complex parser that did not need to keep entire lines in memory
// could get away with much less. Alternatively, we could do a one-off
// mmap allocation for this buffer, which is only mapped larger if we
// actually need the extra space.
ScratchSize = PathSize + ParseSize
// Required space to store a path of the cgroup in the filesystem.
PathSize = _PATH_MAX
// /proc/self/mountinfo path escape sequences are 4 characters long, so
// a path consisting entirely of escaped characters could be 4 times
// larger.
escapedPathMax = 4 * _PATH_MAX
// Required space to parse /proc/self/mountinfo and /proc/self/cgroup.
// See findCPUMount and findCPURelativePath.
ParseSize = 4 * escapedPathMax
)
// Include explicit NUL to be sure we include it in the slice.
const (
v2MaxFile = "/cpu.max\x00"
v1QuotaFile = "/cpu.cfs_quota_us\x00"
v1PeriodFile = "/cpu.cfs_period_us\x00"
)
// Version indicates the cgroup version.
type Version int
const (
VersionUnknown Version = iota
V1
V2
)
// CPU owns the FDs required to read the CPU limit from a cgroup.
type CPU struct {
version Version
// For cgroup v1, this is cpu.cfs_quota_us.
// For cgroup v2, this is cpu.max.
quotaFD int
// For cgroup v1, this is cpu.cfs_period_us.
// For cgroup v2, this is unused.
periodFD int
}
func ( CPU) () {
switch .version {
case V1:
syscall.Close(.quotaFD)
syscall.Close(.periodFD)
case V2:
syscall.Close(.quotaFD)
default:
throw("impossible cgroup version")
}
}
func checkBufferSize( []byte, int) {
if len() != {
println("runtime: cgroup buffer length", len(), "want", )
throw("runtime: cgroup invalid buffer length")
}
}
// OpenCPU returns a CPU for the CPU cgroup containing the current process, or
// ErrNoCgroup if the process is not in a CPU cgroup.
//
// scratch must have length ScratchSize.
func ( []byte) (CPU, error) {
checkBufferSize(, ScratchSize)
:= [:PathSize]
:= [PathSize:]
, , := FindCPU(, )
if != nil {
return CPU{},
}
switch {
case 1:
:= copy([:], v1QuotaFile)
:= [:+]
, := syscall.Open(&[0], syscall.O_RDONLY|syscall.O_CLOEXEC, 0)
if != 0 {
// This may fail if this process was migrated out of
// the cgroup found by FindCPU and that cgroup has been
// deleted.
return CPU{}, errSyscallFailed
}
= copy([:], v1PeriodFile)
= [:+]
, := syscall.Open(&[0], syscall.O_RDONLY|syscall.O_CLOEXEC, 0)
if != 0 {
// This may fail if this process was migrated out of
// the cgroup found by FindCPU and that cgroup has been
// deleted.
return CPU{}, errSyscallFailed
}
:= CPU{
version: 1,
quotaFD: ,
periodFD: ,
}
return , nil
case 2:
:= copy([:], v2MaxFile)
:= [:+]
, := syscall.Open(&[0], syscall.O_RDONLY|syscall.O_CLOEXEC, 0)
if != 0 {
// This may fail if this process was migrated out of
// the cgroup found by FindCPU and that cgroup has been
// deleted.
return CPU{}, errSyscallFailed
}
:= CPU{
version: 2,
quotaFD: ,
periodFD: -1,
}
return , nil
default:
throw("impossible cgroup version")
panic("unreachable")
}
}
// Returns average CPU throughput limit from the cgroup, or ok false if there
// is no limit.
func ( CPU) (float64, bool, error) {
switch .version {
case 1:
, := readV1Number(.quotaFD)
if != nil {
return 0, false, errMalformedFile
}
if < 0 {
// No limit.
return 0, false, nil
}
, := readV1Number(.periodFD)
if != nil {
return 0, false, errMalformedFile
}
return float64() / float64(), true, nil
case 2:
// quotaFD is the cpu.max FD.
return readV2Limit(.quotaFD)
default:
throw("impossible cgroup version")
panic("unreachable")
}
}
// Returns the value from the quota/period file.
func readV1Number( int) (int64, error) {
// The format of the file is "<value>\n" where the value is in
// int64 microseconds and, if quota, may be -1 to indicate no limit.
//
// MaxInt64 requires 19 bytes to display in base 10, thus the
// conservative max size of this file is 19 + 1 (newline) = 20 bytes.
// We'll provide a bit more for good measure.
//
// Always read from the beginning of the file to get a fresh value.
var [64]byte
, := syscall.Pread(, [:], 0)
if != 0 {
return 0, errSyscallFailed
}
if == len() {
return 0, errMalformedFile
}
:= [:]
return parseV1Number()
}
func parseV1Number( []byte) (int64, error) {
// Ignore trailing newline.
:= bytealg.IndexByte(, '\n')
if < 0 {
return 0, errMalformedFile
}
= [:]
, := strconv.Atoi64(string())
if ! {
return 0, errMalformedFile
}
return , nil
}
// Returns CPU throughput limit, or ok false if there is no limit.
func readV2Limit( int) (float64, bool, error) {
// The format of the file is "<quota> <period>\n" where quota and
// period are microseconds and quota may be "max" to indicate no limit.
//
// Note that the kernel is inconsistent about whether the values are
// uint64 or int64: values are parsed as uint64 but printed as int64.
// See kernel/sched/core.c:cpu_max_{show,write}.
//
// In practice, the kernel limits the period to 1s (1000000us) (see
// max_cfs_quota_period), and the quota to (1<<44)us (see
// max_cfs_runtime), so these values can't get large enough for the
// distinction to matter.
//
// MaxInt64 requires 19 bytes to display in base 10, thus the
// conservative max size of this file is 19 + 19 + 1 (space) + 1
// (newline) = 40 bytes. We'll provide a bit more for good measure.
//
// Always read from the beginning of the file to get a fresh value.
var [64]byte
, := syscall.Pread(, [:], 0)
if != 0 {
return 0, false, errSyscallFailed
}
if == len() {
return 0, false, errMalformedFile
}
:= [:]
return parseV2Limit()
}
func parseV2Limit( []byte) (float64, bool, error) {
:= bytealg.IndexByte(, ' ')
if < 0 {
return 0, false, errMalformedFile
}
:= [:]
if bytealg.Compare(, []byte("max")) == 0 {
// No limit.
return 0, false, nil
}
:= [+1:]
// Ignore trailing newline, if any.
= bytealg.IndexByte(, '\n')
if < 0 {
return 0, false, errMalformedFile
}
= [:]
, := strconv.Atoi64(string())
if ! {
return 0, false, errMalformedFile
}
, := strconv.Atoi64(string())
if ! {
return 0, false, errMalformedFile
}
return float64() / float64(), true, nil
}
// FindCPU finds the path to the CPU cgroup that this process is a member of
// and places it in out. scratch is a scratch buffer for internal use.
//
// out must have length PathSize. scratch must have length ParseSize.
//
// Returns the number of bytes written to out and the cgroup version (1 or 2).
//
// Returns ErrNoCgroup if the process is not in a CPU cgroup.
func ( []byte, []byte) (int, Version, error) {
checkBufferSize(, PathSize)
checkBufferSize(, ParseSize)
// The cgroup path is <cgroup mount point> + <relative path>.
//
// This is racy if our cgroup is changed while this runs. For example,
// initially there is only a cgroup v2 mount and we are not in a
// cgroup. After, there a cgroup v1 mount with a CPU controller and we
// are placed in a cgroup in this hierarchy. In that case, findCPUMount
// could pick the v2 mount, and findCPURelativePath could find the v2
// relative path.
//
// In this case we'll later fail to read the cgroup files and fall back
// to assuming no cgroup.
, := FindCPUMountPoint(, )
if != nil {
return 0, 0,
}
// The relative path always starts with /, so we can directly append it
// to the mount point.
, , := FindCPURelativePath([:], )
if != nil {
return 0, 0,
}
+=
return , , nil
}
// FindCPURelativePath finds the path to the CPU cgroup that this process is a member of
// relative to the root of the cgroup mount and places it in out. scratch is a
// scratch buffer for internal use.
//
// out must have length PathSize minus the size of the cgroup mount root (if
// known). scratch must have length ParseSize.
//
// Returns the number of bytes written to out and the cgroup version (1 or 2).
//
// Returns ErrNoCgroup if the process is not in a CPU cgroup.
func ( []byte, []byte) (int, Version, error) {
:= []byte("/proc/self/cgroup\x00")
, := syscall.Open(&[0], syscall.O_RDONLY|syscall.O_CLOEXEC, 0)
if == syscall.ENOENT {
return 0, 0, ErrNoCgroup
} else if != 0 {
return 0, 0, errSyscallFailed
}
// The relative path always starts with /, so we can directly append it
// to the mount point.
, , := parseCPURelativePath(, syscall.Read, [:], )
if != nil {
syscall.Close()
return 0, 0,
}
syscall.Close()
return , , nil
}
// Finds the path of the current process's CPU cgroup relative to the cgroup
// mount and writes it to out.
//
// Returns the number of bytes written and the cgroup version (1 or 2).
func parseCPURelativePath( int, func( int, []byte) (int, uintptr), []byte, []byte) (int, Version, error) {
// The format of each line is
//
// hierarchy-ID:controller-list:cgroup-path
//
// controller-list is comma-separated.
// See man 5 cgroup for more details.
//
// cgroup v2 has hierarchy-ID 0. If a v1 hierarchy contains "cpu", that
// is the CPU controller. Otherwise the v2 hierarchy (if any) is the
// CPU controller.
//
// hierarchy-ID and controller-list have relatively small maximum
// sizes, and the path can be up to _PATH_MAX, so we need a bit more
// than 1 _PATH_MAX of scratch space.
:= newLineReader(, , )
// Bytes written to out.
:= 0
for {
:= .next()
if == errIncompleteLine {
// Don't allow incomplete lines. While in theory the
// incomplete line may be for a controller we don't
// care about, in practice all lines should be of
// similar length, so we should just have a buffer big
// enough for any.
return 0, 0,
} else if == errEOF {
break
} else if != nil {
return 0, 0,
}
:= .line()
// The format of each line is
//
// hierarchy-ID:controller-list:cgroup-path
//
// controller-list is comma-separated.
// See man 5 cgroup for more details.
:= bytealg.IndexByte(, ':')
if < 0 {
return 0, 0, errMalformedFile
}
:= [:]
= [+1:]
= bytealg.IndexByte(, ':')
if < 0 {
return 0, 0, errMalformedFile
}
:= [:]
= [+1:]
:=
if string() == "0" {
// v2 hierarchy.
= copy(, )
// Keep searching, we might find a v1 hierarchy with a
// CPU controller, which takes precedence.
} else {
// v1 hierarchy
if containsCPU() {
// Found a v1 CPU controller. This must be the
// only one, so we're done.
return copy(, ), V1, nil
}
}
}
if == 0 {
// Found nothing.
return 0, 0, ErrNoCgroup
}
// Must be v2, v1 returns above.
return , V2, nil
}
// Returns true if comma-separated list b contains "cpu".
func containsCPU( []byte) bool {
for len() > 0 {
:= bytealg.IndexByte(, ',')
if < 0 {
// Neither cmd/compile nor gccgo allocates for these string conversions.
return string() == "cpu"
}
:= [:]
:= [+1:]
if string() == "cpu" {
return true
}
=
}
return false
}
// FindCPUMountPoint finds the root of the CPU cgroup mount places it in out.
// scratch is a scratch buffer for internal use.
//
// out must have length PathSize. scratch must have length ParseSize.
//
// Returns the number of bytes written to out.
//
// Returns ErrNoCgroup if the process is not in a CPU cgroup.
func ( []byte, []byte) (int, error) {
checkBufferSize(, PathSize)
checkBufferSize(, ParseSize)
:= []byte("/proc/self/mountinfo\x00")
, := syscall.Open(&[0], syscall.O_RDONLY|syscall.O_CLOEXEC, 0)
if == syscall.ENOENT {
return 0, ErrNoCgroup
} else if != 0 {
return 0, errSyscallFailed
}
, := parseCPUMount(, syscall.Read, , )
if != nil {
syscall.Close()
return 0,
}
syscall.Close()
return , nil
}
// Returns the mount point for the cpu cgroup controller (v1 or v2) from
// /proc/self/mountinfo.
func parseCPUMount( int, func( int, []byte) (int, uintptr), []byte, []byte) (int, error) {
// The format of each line is:
//
// 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
// (1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
//
// (1) mount ID: unique identifier of the mount (may be reused after umount)
// (2) parent ID: ID of parent (or of self for the top of the mount tree)
// (3) major:minor: value of st_dev for files on filesystem
// (4) root: root of the mount within the filesystem
// (5) mount point: mount point relative to the process's root
// (6) mount options: per mount options
// (7) optional fields: zero or more fields of the form "tag[:value]"
// (8) separator: marks the end of the optional fields
// (9) filesystem type: name of filesystem of the form "type[.subtype]"
// (10) mount source: filesystem specific information or "none"
// (11) super options: per super block options
//
// See man 5 proc_pid_mountinfo for more details.
//
// Note that emitted paths will not contain space, tab, newline, or
// carriage return. Those are escaped. See Linux show_mountinfo ->
// show_path. We must unescape before returning.
//
// We return the mount point (5) if the filesystem type (9) is cgroup2,
// or cgroup with "cpu" in the super options (11).
//
// (4), (5), and (10) are up to _PATH_MAX. The remaining fields have a
// small fixed maximum size, so 4*_PATH_MAX is plenty of scratch space.
// Note that non-cgroup mounts may have arbitrarily long (11), but we
// can skip those when parsing.
:= newLineReader(, , )
// Bytes written to out.
:= 0
for {
//incomplete := false
:= .next()
if == errIncompleteLine {
// An incomplete line is fine as long as it doesn't
// impede parsing the fields we need. It shouldn't be
// possible for any mount to use more than 3*PATH_MAX
// before (9) because there are two paths and all other
// earlier fields have bounded options. Only (11) has
// unbounded options.
} else if == errEOF {
break
} else if != nil {
return 0,
}
:= .line()
// Skip first four fields.
for range 4 {
:= bytealg.IndexByte(, ' ')
if < 0 {
return 0, errMalformedFile
}
= [+1:]
}
// (5) mount point: mount point relative to the process's root
:= bytealg.IndexByte(, ' ')
if < 0 {
return 0, errMalformedFile
}
:= [:]
= [+1:]
// Skip ahead past optional fields, delimited by " - ".
for {
= bytealg.IndexByte(, ' ')
if < 0 {
return 0, errMalformedFile
}
if +3 >= len() {
return 0, errMalformedFile
}
:= [ : +3]
if string() == " - " {
= [+3:]
break
}
= [+1:]
}
// (9) filesystem type: name of filesystem of the form "type[.subtype]"
= bytealg.IndexByte(, ' ')
if < 0 {
return 0, errMalformedFile
}
:= [:]
= [+1:]
if string() != "cgroup" && string() != "cgroup2" {
continue
}
// As in findCPUPath, cgroup v1 with a CPU controller takes
// precendence over cgroup v2.
if string() == "cgroup2" {
// v2 hierarchy.
, = unescapePath(, )
if != nil {
// Don't keep searching on error. The kernel
// should never produce broken escaping.
return ,
}
// Keep searching, we might find a v1 hierarchy with a
// CPU controller, which takes precedence.
continue
}
// (10) mount source: filesystem specific information or "none"
= bytealg.IndexByte(, ' ')
if < 0 {
return 0, errMalformedFile
}
// Don't care about mount source.
= [+1:]
// (11) super options: per super block options
:=
// v1 hierarchy
if containsCPU() {
// Found a v1 CPU controller. This must be the
// only one, so we're done.
return unescapePath(, )
}
}
if == 0 {
// Found nothing.
return 0, ErrNoCgroup
}
return , nil
}
var errInvalidEscape error = stringError("invalid path escape sequence")
// unescapePath copies in to out, unescaping escape sequences generated by
// Linux's show_path.
//
// That is, '\', ' ', '\t', and '\n' are converted to octal escape sequences,
// like '\040' for space.
//
// out must be at least as large as in.
//
// Returns the number of bytes written to out.
//
// Also see escapePath in cgroup_linux_test.go.
func unescapePath( []byte, []byte) (int, error) {
// Not strictly necessary, but simplifies the implementation and will
// always hold in users.
if len() < len() {
throw("output too small")
}
var , int
for < len() {
:= []
if != '\\' {
[] =
++
++
continue
}
// Start of escape sequence.
// Escape sequence is always 4 characters: one slash and three
// digits.
if +3 >= len() {
return , errInvalidEscape
}
var byte
for := range 3 {
:= [+1+]
if < '0' || > '9' {
return , errInvalidEscape
}
*= 8
+= - '0'
}
[] =
++
+= 4
}
return , nil
}
![]() |
The pages are generated with Golds v0.7.7-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |