// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package sys

// Copied from math/bits to avoid dependence.

var deBruijn32tab = [32]byte{
	0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
	31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}

const deBruijn32 = 0x077CB531

var deBruijn64tab = [64]byte{
	0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}

const deBruijn64 = 0x03f79d71b4ca8b09

const ntz8tab = "" +
	"\x08\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x06\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x07\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x06\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" +
	"\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00"

// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
func ( uint32) int {
	if  == 0 {
		return 32
	}
	// see comment in TrailingZeros64
	return int(deBruijn32tab[(&-)*deBruijn32>>(32-5)])
}

// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
func ( uint64) int {
	if  == 0 {
		return 64
	}
	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
	//
	// x & -x leaves only the right-most bit set in the word. Let k be the
	// index of that bit. Since only a single bit is set, the value is two
	// to the power of k. Multiplying by a power of two is equivalent to
	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
	// is such that all six bit, consecutive substrings are distinct.
	// Therefore, if we have a left shifted version of this constant we can
	// find by how many bits it was shifted by looking at which six bit
	// substring ended up at the top of the word.
	// (Knuth, volume 4, section 7.3.1)
	return int(deBruijn64tab[(&-)*deBruijn64>>(64-6)])
}

// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
func ( uint8) int {
	return int(ntz8tab[])
}

const len8tab = "" +
	"\x00\x01\x02\x02\x03\x03\x03\x03\x04\x04\x04\x04\x04\x04\x04\x04" +
	"\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05" +
	"\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06" +
	"\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06" +
	"\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" +
	"\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" +
	"\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" +
	"\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" +
	"\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08"

// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
//
// nosplit because this is used in src/runtime/histogram.go, which make run in sensitive contexts.
//
//go:nosplit
func ( uint64) ( int) {
	if  >= 1<<32 {
		 >>= 32
		 = 32
	}
	if  >= 1<<16 {
		 >>= 16
		 += 16
	}
	if  >= 1<<8 {
		 >>= 8
		 += 8
	}
	return  + int(len8tab[])
}

// --- OnesCount ---

const m0 = 0x5555555555555555 // 01010101 ...
const m1 = 0x3333333333333333 // 00110011 ...
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...

// OnesCount64 returns the number of one bits ("population count") in x.
func ( uint64) int {
	// Implementation: Parallel summing of adjacent bits.
	// See "Hacker's Delight", Chap. 5: Counting Bits.
	// The following pattern shows the general approach:
	//
	//   x = x>>1&(m0&m) + x&(m0&m)
	//   x = x>>2&(m1&m) + x&(m1&m)
	//   x = x>>4&(m2&m) + x&(m2&m)
	//   x = x>>8&(m3&m) + x&(m3&m)
	//   x = x>>16&(m4&m) + x&(m4&m)
	//   x = x>>32&(m5&m) + x&(m5&m)
	//   return int(x)
	//
	// Masking (& operations) can be left away when there's no
	// danger that a field's sum will carry over into the next
	// field: Since the result cannot be > 64, 8 bits is enough
	// and we can ignore the masks for the shifts by 8 and up.
	// Per "Hacker's Delight", the first line can be simplified
	// more, but it saves at best one instruction, so we leave
	// it alone for clarity.
	const  = 1<<64 - 1
	 = >>1&(m0&) + &(m0&)
	 = >>2&(m1&) + &(m1&)
	 = (>>4 + ) & (m2 & )
	 +=  >> 8
	 +=  >> 16
	 +=  >> 32
	return int() & (1<<7 - 1)
}

// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
func ( uint64) int { return 64 - Len64() }

// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
func ( uint8) int { return 8 - Len8() }

// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func ( uint8) int {
	return int(len8tab[])
}

// Bswap64 returns its input with byte order reversed
// 0x0102030405060708 -> 0x0807060504030201
func ( uint64) uint64 {
	 := uint64(0x00ff00ff00ff00ff)
	 :=  >> 8 & 
	 := ( & ) << 8
	 =  | 
	 := uint64(0x0000ffff0000ffff)
	 =  >> 16 & 
	 = ( & ) << 16
	 =  | 
	 := uint64(0x00000000ffffffff)
	 =  >> 32 & 
	 = ( & ) << 32
	 =  | 
	return 
}

// Bswap32 returns its input with byte order reversed
// 0x01020304 -> 0x04030201
func ( uint32) uint32 {
	 := uint32(0x00ff00ff)
	 :=  >> 8 & 
	 := ( & ) << 8
	 =  | 
	 := uint32(0x0000ffff)
	 =  >> 16 & 
	 = ( & ) << 16
	 =  | 
	return 
}

// Prefetch prefetches data from memory addr to cache
//
// AMD64: Produce PREFETCHT0 instruction
//
// ARM64: Produce PRFM instruction with PLDL1KEEP option
func ( uintptr) {}

// PrefetchStreamed prefetches data from memory addr, with a hint that this data is being streamed.
// That is, it is likely to be accessed very soon, but only once. If possible, this will avoid polluting the cache.
//
// AMD64: Produce PREFETCHNTA instruction
//
// ARM64: Produce PRFM instruction with PLDL1STRM option
func ( uintptr) {}

// GetCallerPC returns the program counter (PC) of its caller's caller.
// GetCallerSP returns the stack pointer (SP) of its caller's caller.
// Both are implemented as intrinsics on every platform.
//
// For example:
//
//	func f(arg1, arg2, arg3 int) {
//		pc := GetCallerPC()
//		sp := GetCallerSP()
//	}
//
// These two lines find the PC and SP immediately following
// the call to f (where f will return).
//
// The call to GetCallerPC and GetCallerSP must be done in the
// frame being asked about.
//
// The result of GetCallerSP is correct at the time of the return,
// but it may be invalidated by any subsequent call to a function
// that might relocate the stack in order to grow or shrink it.
// A general rule is that the result of GetCallerSP should be used
// immediately and can only be passed to nosplit functions.

func () uintptr

func () uintptr

// GetClosurePtr returns the pointer to the current closure.
// GetClosurePtr can only be used in an assignment statement
// at the entry of a function. Moreover, go:nosplit directive
// must be specified at the declaration of caller function,
// so that the function prolog does not clobber the closure register.
// for example:
//
//	//go:nosplit
//	func f(arg1, arg2, arg3 int) {
//		dx := GetClosurePtr()
//	}
//
// The compiler rewrites calls to this function into instructions that fetch the
// pointer from a well-known register (DX on x86 architecture, etc.) directly.
//
// WARNING: PGO-based devirtualization cannot detect that caller of
// GetClosurePtr requires closure context, and thus must maintain a list of
// these functions, which is in
// cmd/compile/internal/devirtualize/pgo.maybeDevirtualizeFunctionCall.
func () uintptr