Source File
bits.go
Belonging Package
math/bits
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run make_tables.go
// Package bits implements bit counting and manipulation
// functions for the predeclared unsigned integer types.
//
// Functions in this package may be implemented directly by
// the compiler, for better performance. For those functions
// the code in this package will not be used. Which
// functions are implemented by the compiler depends on the
// architecture and the Go release.
package bits
const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
// UintSize is the size of a uint in bits.
const UintSize = uintSize
// --- LeadingZeros ---
// LeadingZeros returns the number of leading zero bits in x; the result is [UintSize] for x == 0.
func ( uint) int { return UintSize - Len() }
// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
func ( uint8) int { return 8 - Len8() }
// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
func ( uint16) int { return 16 - Len16() }
// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
func ( uint32) int { return 32 - Len32() }
// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
func ( uint64) int { return 64 - Len64() }
// --- TrailingZeros ---
// See http://supertech.csail.mit.edu/papers/debruijn.pdf
const deBruijn32 = 0x077CB531
var deBruijn32tab = [32]byte{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}
const deBruijn64 = 0x03f79d71b4ca8b09
var deBruijn64tab = [64]byte{
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
// TrailingZeros returns the number of trailing zero bits in x; the result is [UintSize] for x == 0.
func ( uint) int {
if UintSize == 32 {
return TrailingZeros32(uint32())
}
return TrailingZeros64(uint64())
}
// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
func ( uint8) int {
return int(ntz8tab[])
}
// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
func ( uint16) int {
if == 0 {
return 16
}
// see comment in TrailingZeros64
return int(deBruijn32tab[uint32(&-)*deBruijn32>>(32-5)])
}
// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
func ( uint32) int {
if == 0 {
return 32
}
// see comment in TrailingZeros64
return int(deBruijn32tab[(&-)*deBruijn32>>(32-5)])
}
// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
func ( uint64) int {
if == 0 {
return 64
}
// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
//
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multiplying by a power of two is equivalent to
// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
// is such that all six bit, consecutive substrings are distinct.
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
// (Knuth, volume 4, section 7.3.1)
return int(deBruijn64tab[(&-)*deBruijn64>>(64-6)])
}
// --- OnesCount ---
const m0 = 0x5555555555555555 // 01010101 ...
const m1 = 0x3333333333333333 // 00110011 ...
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
const m3 = 0x00ff00ff00ff00ff // etc.
const m4 = 0x0000ffff0000ffff
// OnesCount returns the number of one bits ("population count") in x.
func ( uint) int {
if UintSize == 32 {
return OnesCount32(uint32())
}
return OnesCount64(uint64())
}
// OnesCount8 returns the number of one bits ("population count") in x.
func ( uint8) int {
return int(pop8tab[])
}
// OnesCount16 returns the number of one bits ("population count") in x.
func ( uint16) int {
return int(pop8tab[>>8] + pop8tab[&0xff])
}
// OnesCount32 returns the number of one bits ("population count") in x.
func ( uint32) int {
return int(pop8tab[>>24] + pop8tab[>>16&0xff] + pop8tab[>>8&0xff] + pop8tab[&0xff])
}
// OnesCount64 returns the number of one bits ("population count") in x.
func ( uint64) int {
// Implementation: Parallel summing of adjacent bits.
// See "Hacker's Delight", Chap. 5: Counting Bits.
// The following pattern shows the general approach:
//
// x = x>>1&(m0&m) + x&(m0&m)
// x = x>>2&(m1&m) + x&(m1&m)
// x = x>>4&(m2&m) + x&(m2&m)
// x = x>>8&(m3&m) + x&(m3&m)
// x = x>>16&(m4&m) + x&(m4&m)
// x = x>>32&(m5&m) + x&(m5&m)
// return int(x)
//
// Masking (& operations) can be left away when there's no
// danger that a field's sum will carry over into the next
// field: Since the result cannot be > 64, 8 bits is enough
// and we can ignore the masks for the shifts by 8 and up.
// Per "Hacker's Delight", the first line can be simplified
// more, but it saves at best one instruction, so we leave
// it alone for clarity.
const = 1<<64 - 1
= >>1&(m0&) + &(m0&)
= >>2&(m1&) + &(m1&)
= (>>4 + ) & (m2 & )
+= >> 8
+= >> 16
+= >> 32
return int() & (1<<7 - 1)
}
// --- RotateLeft ---
// RotateLeft returns the value of x rotated left by (k mod [UintSize]) bits.
// To rotate x right by k bits, call RotateLeft(x, -k).
//
// This function's execution time does not depend on the inputs.
func ( uint, int) uint {
if UintSize == 32 {
return uint(RotateLeft32(uint32(), ))
}
return uint(RotateLeft64(uint64(), ))
}
// RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
// To rotate x right by k bits, call RotateLeft8(x, -k).
//
// This function's execution time does not depend on the inputs.
func ( uint8, int) uint8 {
const = 8
:= uint() & ( - 1)
return << | >>(-)
}
// RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
// To rotate x right by k bits, call RotateLeft16(x, -k).
//
// This function's execution time does not depend on the inputs.
func ( uint16, int) uint16 {
const = 16
:= uint() & ( - 1)
return << | >>(-)
}
// RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
// To rotate x right by k bits, call RotateLeft32(x, -k).
//
// This function's execution time does not depend on the inputs.
func ( uint32, int) uint32 {
const = 32
:= uint() & ( - 1)
return << | >>(-)
}
// RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
// To rotate x right by k bits, call RotateLeft64(x, -k).
//
// This function's execution time does not depend on the inputs.
func ( uint64, int) uint64 {
const = 64
:= uint() & ( - 1)
return << | >>(-)
}
// --- Reverse ---
// Reverse returns the value of x with its bits in reversed order.
func ( uint) uint {
if UintSize == 32 {
return uint(Reverse32(uint32()))
}
return uint(Reverse64(uint64()))
}
// Reverse8 returns the value of x with its bits in reversed order.
func ( uint8) uint8 {
return rev8tab[]
}
// Reverse16 returns the value of x with its bits in reversed order.
func ( uint16) uint16 {
return uint16(rev8tab[>>8]) | uint16(rev8tab[&0xff])<<8
}
// Reverse32 returns the value of x with its bits in reversed order.
func ( uint32) uint32 {
const = 1<<32 - 1
= >>1&(m0&) | &(m0&)<<1
= >>2&(m1&) | &(m1&)<<2
= >>4&(m2&) | &(m2&)<<4
return ReverseBytes32()
}
// Reverse64 returns the value of x with its bits in reversed order.
func ( uint64) uint64 {
const = 1<<64 - 1
= >>1&(m0&) | &(m0&)<<1
= >>2&(m1&) | &(m1&)<<2
= >>4&(m2&) | &(m2&)<<4
return ReverseBytes64()
}
// --- ReverseBytes ---
// ReverseBytes returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ( uint) uint {
if UintSize == 32 {
return uint(ReverseBytes32(uint32()))
}
return uint(ReverseBytes64(uint64()))
}
// ReverseBytes16 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ( uint16) uint16 {
return >>8 | <<8
}
// ReverseBytes32 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ( uint32) uint32 {
const = 1<<32 - 1
= >>8&(m3&) | &(m3&)<<8
return >>16 | <<16
}
// ReverseBytes64 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ( uint64) uint64 {
const = 1<<64 - 1
= >>8&(m3&) | &(m3&)<<8
= >>16&(m4&) | &(m4&)<<16
return >>32 | <<32
}
// --- Len ---
// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func ( uint) int {
if UintSize == 32 {
return Len32(uint32())
}
return Len64(uint64())
}
// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func ( uint8) int {
return int(len8tab[])
}
// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func ( uint16) ( int) {
if >= 1<<8 {
>>= 8
= 8
}
return + int(len8tab[])
}
// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func ( uint32) ( int) {
if >= 1<<16 {
>>= 16
= 16
}
if >= 1<<8 {
>>= 8
+= 8
}
return + int(len8tab[])
}
// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func ( uint64) ( int) {
if >= 1<<32 {
>>= 32
= 32
}
if >= 1<<16 {
>>= 16
+= 16
}
if >= 1<<8 {
>>= 8
+= 8
}
return + int(len8tab[])
}
// --- Add with carry ---
// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func (, , uint) (, uint) {
if UintSize == 32 {
, := Add32(uint32(), uint32(), uint32())
return uint(), uint()
}
, := Add64(uint64(), uint64(), uint64())
return uint(), uint()
}
// Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func (, , uint32) (, uint32) {
:= uint64() + uint64() + uint64()
= uint32()
= uint32( >> 32)
return
}
// Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func (, , uint64) (, uint64) {
= + +
// The sum will overflow if both top bits are set (x & y) or if one of them
// is (x | y), and a carry from the lower place happened. If such a carry
// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
= (( & ) | (( | ) &^ )) >> 63
return
}
// --- Subtract with borrow ---
// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func (, , uint) (, uint) {
if UintSize == 32 {
, := Sub32(uint32(), uint32(), uint32())
return uint(), uint()
}
, := Sub64(uint64(), uint64(), uint64())
return uint(), uint()
}
// Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func (, , uint32) (, uint32) {
= - -
// The difference will underflow if the top bit of x is not set and the top
// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
// from the lower place happens. If that borrow happens, the result will be
// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
= ((^ & ) | (^( ^ ) & )) >> 31
return
}
// Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func (, , uint64) (, uint64) {
= - -
// See Sub32 for the bit logic.
= ((^ & ) | (^( ^ ) & )) >> 63
return
}
// --- Full-width multiply ---
// Mul returns the full-width product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
func (, uint) (, uint) {
if UintSize == 32 {
, := Mul32(uint32(), uint32())
return uint(), uint()
}
, := Mul64(uint64(), uint64())
return uint(), uint()
}
// Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
func (, uint32) (, uint32) {
:= uint64() * uint64()
, = uint32(>>32), uint32()
return
}
// Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
func (, uint64) (, uint64) {
const = 1<<32 - 1
:= &
:= >> 32
:= &
:= >> 32
:= *
:= * + >>32
:= &
:= >> 32
+= *
= * + + >>32
= *
return
}
// --- Full-width divide ---
// Div returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func (, , uint) (, uint) {
if UintSize == 32 {
, := Div32(uint32(), uint32(), uint32())
return uint(), uint()
}
, := Div64(uint64(), uint64(), uint64())
return uint(), uint()
}
// Div32 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func (, , uint32) (, uint32) {
if != 0 && <= {
panic(overflowError)
}
:= uint64()<<32 | uint64()
, = uint32(/uint64()), uint32(%uint64())
return
}
// Div64 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func (, , uint64) (, uint64) {
if == 0 {
panic(divideError)
}
if <= {
panic(overflowError)
}
// If high part is zero, we can directly return the results.
if == 0 {
return / , %
}
:= uint(LeadingZeros64())
<<=
const (
= 1 << 32
= - 1
)
:= >> 32
:= &
:= << | >>(64-)
:= <<
:= >> 32
:= &
:= /
:= - *
for >= || * > *+ {
--
+=
if >= {
break
}
}
:= * + - *
:= /
= - *
for >= || * > *+ {
--
+=
if >= {
break
}
}
return * + , (* + - *) >>
}
// Rem returns the remainder of (hi, lo) divided by y. Rem panics for
// y == 0 (division by zero) but, unlike Div, it doesn't panic on a
// quotient overflow.
func (, , uint) uint {
if UintSize == 32 {
return uint(Rem32(uint32(), uint32(), uint32()))
}
return uint(Rem64(uint64(), uint64(), uint64()))
}
// Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
// for y == 0 (division by zero) but, unlike [Div32], it doesn't panic
// on a quotient overflow.
func (, , uint32) uint32 {
return uint32((uint64()<<32 | uint64()) % uint64())
}
// Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
// for y == 0 (division by zero) but, unlike [Div64], it doesn't panic
// on a quotient overflow.
func (, , uint64) uint64 {
// We scale down hi so that hi < y, then use Div64 to compute the
// rem with the guarantee that it won't panic on quotient overflow.
// Given that
// hi ≡ hi%y (mod y)
// we have
// hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y)
, := Div64(%, , )
return
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |