// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:generate go run make_tables.go

// Package bits implements bit counting and manipulation // functions for the predeclared unsigned integer types. // // Functions in this package may be implemented directly by // the compiler, for better performance. For those functions // the code in this package will not be used. Which // functions are implemented by the compiler depends on the // architecture and the Go release.
package bits const uintSize = 32 << (^uint(0) >> 63) // 32 or 64 // UintSize is the size of a uint in bits. const UintSize = uintSize // --- LeadingZeros --- // LeadingZeros returns the number of leading zero bits in x; the result is [UintSize] for x == 0. func ( uint) int { return UintSize - Len() } // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0. func ( uint8) int { return 8 - Len8() } // LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0. func ( uint16) int { return 16 - Len16() } // LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0. func ( uint32) int { return 32 - Len32() } // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0. func ( uint64) int { return 64 - Len64() } // --- TrailingZeros --- // See http://keithandkatie.com/keith/papers/debruijn.html const deBruijn32 = 0x077CB531 var deBruijn32tab = [32]byte{ 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, } const deBruijn64 = 0x03f79d71b4ca8b09 var deBruijn64tab = [64]byte{ 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, } // TrailingZeros returns the number of trailing zero bits in x; the result is [UintSize] for x == 0. func ( uint) int { if UintSize == 32 { return TrailingZeros32(uint32()) } return TrailingZeros64(uint64()) } // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0. func ( uint8) int { return int(ntz8tab[]) } // TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0. func ( uint16) int { if == 0 { return 16 } // see comment in TrailingZeros64 return int(deBruijn32tab[uint32(&-)*deBruijn32>>(32-5)]) } // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0. func ( uint32) int { if == 0 { return 32 } // see comment in TrailingZeros64 return int(deBruijn32tab[(&-)*deBruijn32>>(32-5)]) } // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0. func ( uint64) int { if == 0 { return 64 } // If popcount is fast, replace code below with return popcount(^x & (x - 1)). // // x & -x leaves only the right-most bit set in the word. Let k be the // index of that bit. Since only a single bit is set, the value is two // to the power of k. Multiplying by a power of two is equivalent to // left shifting, in this case by k bits. The de Bruijn (64 bit) constant // is such that all six bit, consecutive substrings are distinct. // Therefore, if we have a left shifted version of this constant we can // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. // (Knuth, volume 4, section 7.3.1) return int(deBruijn64tab[(&-)*deBruijn64>>(64-6)]) } // --- OnesCount --- const m0 = 0x5555555555555555 // 01010101 ... const m1 = 0x3333333333333333 // 00110011 ... const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... const m3 = 0x00ff00ff00ff00ff // etc. const m4 = 0x0000ffff0000ffff // OnesCount returns the number of one bits ("population count") in x. func ( uint) int { if UintSize == 32 { return OnesCount32(uint32()) } return OnesCount64(uint64()) } // OnesCount8 returns the number of one bits ("population count") in x. func ( uint8) int { return int(pop8tab[]) } // OnesCount16 returns the number of one bits ("population count") in x. func ( uint16) int { return int(pop8tab[>>8] + pop8tab[&0xff]) } // OnesCount32 returns the number of one bits ("population count") in x. func ( uint32) int { return int(pop8tab[>>24] + pop8tab[>>16&0xff] + pop8tab[>>8&0xff] + pop8tab[&0xff]) } // OnesCount64 returns the number of one bits ("population count") in x. func ( uint64) int { // Implementation: Parallel summing of adjacent bits. // See "Hacker's Delight", Chap. 5: Counting Bits. // The following pattern shows the general approach: // // x = x>>1&(m0&m) + x&(m0&m) // x = x>>2&(m1&m) + x&(m1&m) // x = x>>4&(m2&m) + x&(m2&m) // x = x>>8&(m3&m) + x&(m3&m) // x = x>>16&(m4&m) + x&(m4&m) // x = x>>32&(m5&m) + x&(m5&m) // return int(x) // // Masking (& operations) can be left away when there's no // danger that a field's sum will carry over into the next // field: Since the result cannot be > 64, 8 bits is enough // and we can ignore the masks for the shifts by 8 and up. // Per "Hacker's Delight", the first line can be simplified // more, but it saves at best one instruction, so we leave // it alone for clarity. const = 1<<64 - 1 = >>1&(m0&) + &(m0&) = >>2&(m1&) + &(m1&) = (>>4 + ) & (m2 & ) += >> 8 += >> 16 += >> 32 return int() & (1<<7 - 1) } // --- RotateLeft --- // RotateLeft returns the value of x rotated left by (k mod [UintSize]) bits. // To rotate x right by k bits, call RotateLeft(x, -k). // // This function's execution time does not depend on the inputs. func ( uint, int) uint { if UintSize == 32 { return uint(RotateLeft32(uint32(), )) } return uint(RotateLeft64(uint64(), )) } // RotateLeft8 returns the value of x rotated left by (k mod 8) bits. // To rotate x right by k bits, call RotateLeft8(x, -k). // // This function's execution time does not depend on the inputs. func ( uint8, int) uint8 { const = 8 := uint() & ( - 1) return << | >>(-) } // RotateLeft16 returns the value of x rotated left by (k mod 16) bits. // To rotate x right by k bits, call RotateLeft16(x, -k). // // This function's execution time does not depend on the inputs. func ( uint16, int) uint16 { const = 16 := uint() & ( - 1) return << | >>(-) } // RotateLeft32 returns the value of x rotated left by (k mod 32) bits. // To rotate x right by k bits, call RotateLeft32(x, -k). // // This function's execution time does not depend on the inputs. func ( uint32, int) uint32 { const = 32 := uint() & ( - 1) return << | >>(-) } // RotateLeft64 returns the value of x rotated left by (k mod 64) bits. // To rotate x right by k bits, call RotateLeft64(x, -k). // // This function's execution time does not depend on the inputs. func ( uint64, int) uint64 { const = 64 := uint() & ( - 1) return << | >>(-) } // --- Reverse --- // Reverse returns the value of x with its bits in reversed order. func ( uint) uint { if UintSize == 32 { return uint(Reverse32(uint32())) } return uint(Reverse64(uint64())) } // Reverse8 returns the value of x with its bits in reversed order. func ( uint8) uint8 { return rev8tab[] } // Reverse16 returns the value of x with its bits in reversed order. func ( uint16) uint16 { return uint16(rev8tab[>>8]) | uint16(rev8tab[&0xff])<<8 } // Reverse32 returns the value of x with its bits in reversed order. func ( uint32) uint32 { const = 1<<32 - 1 = >>1&(m0&) | &(m0&)<<1 = >>2&(m1&) | &(m1&)<<2 = >>4&(m2&) | &(m2&)<<4 return ReverseBytes32() } // Reverse64 returns the value of x with its bits in reversed order. func ( uint64) uint64 { const = 1<<64 - 1 = >>1&(m0&) | &(m0&)<<1 = >>2&(m1&) | &(m1&)<<2 = >>4&(m2&) | &(m2&)<<4 return ReverseBytes64() } // --- ReverseBytes --- // ReverseBytes returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. func ( uint) uint { if UintSize == 32 { return uint(ReverseBytes32(uint32())) } return uint(ReverseBytes64(uint64())) } // ReverseBytes16 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. func ( uint16) uint16 { return >>8 | <<8 } // ReverseBytes32 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. func ( uint32) uint32 { const = 1<<32 - 1 = >>8&(m3&) | &(m3&)<<8 return >>16 | <<16 } // ReverseBytes64 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. func ( uint64) uint64 { const = 1<<64 - 1 = >>8&(m3&) | &(m3&)<<8 = >>16&(m4&) | &(m4&)<<16 return >>32 | <<32 } // --- Len --- // Len returns the minimum number of bits required to represent x; the result is 0 for x == 0. func ( uint) int { if UintSize == 32 { return Len32(uint32()) } return Len64(uint64()) } // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. func ( uint8) int { return int(len8tab[]) } // Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. func ( uint16) ( int) { if >= 1<<8 { >>= 8 = 8 } return + int(len8tab[]) } // Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. func ( uint32) ( int) { if >= 1<<16 { >>= 16 = 16 } if >= 1<<8 { >>= 8 += 8 } return + int(len8tab[]) } // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. func ( uint64) ( int) { if >= 1<<32 { >>= 32 = 32 } if >= 1<<16 { >>= 16 += 16 } if >= 1<<8 { >>= 8 += 8 } return + int(len8tab[]) } // --- Add with carry --- // Add returns the sum with carry of x, y and carry: sum = x + y + carry. // The carry input must be 0 or 1; otherwise the behavior is undefined. // The carryOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. func (, , uint) (, uint) { if UintSize == 32 { , := Add32(uint32(), uint32(), uint32()) return uint(), uint() } , := Add64(uint64(), uint64(), uint64()) return uint(), uint() } // Add32 returns the sum with carry of x, y and carry: sum = x + y + carry. // The carry input must be 0 or 1; otherwise the behavior is undefined. // The carryOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. func (, , uint32) (, uint32) { := uint64() + uint64() + uint64() = uint32() = uint32( >> 32) return } // Add64 returns the sum with carry of x, y and carry: sum = x + y + carry. // The carry input must be 0 or 1; otherwise the behavior is undefined. // The carryOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. func (, , uint64) (, uint64) { = + + // The sum will overflow if both top bits are set (x & y) or if one of them // is (x | y), and a carry from the lower place happened. If such a carry // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). = (( & ) | (( | ) &^ )) >> 63 return } // --- Subtract with borrow --- // Sub returns the difference of x, y and borrow: diff = x - y - borrow. // The borrow input must be 0 or 1; otherwise the behavior is undefined. // The borrowOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. func (, , uint) (, uint) { if UintSize == 32 { , := Sub32(uint32(), uint32(), uint32()) return uint(), uint() } , := Sub64(uint64(), uint64(), uint64()) return uint(), uint() } // Sub32 returns the difference of x, y and borrow, diff = x - y - borrow. // The borrow input must be 0 or 1; otherwise the behavior is undefined. // The borrowOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. func (, , uint32) (, uint32) { = - - // The difference will underflow if the top bit of x is not set and the top // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow // from the lower place happens. If that borrow happens, the result will be // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). = ((^ & ) | (^( ^ ) & )) >> 31 return } // Sub64 returns the difference of x, y and borrow: diff = x - y - borrow. // The borrow input must be 0 or 1; otherwise the behavior is undefined. // The borrowOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. func (, , uint64) (, uint64) { = - - // See Sub32 for the bit logic. = ((^ & ) | (^( ^ ) & )) >> 63 return } // --- Full-width multiply --- // Mul returns the full-width product of x and y: (hi, lo) = x * y // with the product bits' upper half returned in hi and the lower // half returned in lo. // // This function's execution time does not depend on the inputs. func (, uint) (, uint) { if UintSize == 32 { , := Mul32(uint32(), uint32()) return uint(), uint() } , := Mul64(uint64(), uint64()) return uint(), uint() } // Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y // with the product bits' upper half returned in hi and the lower // half returned in lo. // // This function's execution time does not depend on the inputs. func (, uint32) (, uint32) { := uint64() * uint64() , = uint32(>>32), uint32() return } // Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y // with the product bits' upper half returned in hi and the lower // half returned in lo. // // This function's execution time does not depend on the inputs. func (, uint64) (, uint64) { const = 1<<32 - 1 := & := >> 32 := & := >> 32 := * := * + >>32 := & := >> 32 += * = * + + >>32 = * return } // --- Full-width divide --- // Div returns the quotient and remainder of (hi, lo) divided by y: // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper // half in parameter hi and the lower half in parameter lo. // Div panics for y == 0 (division by zero) or y <= hi (quotient overflow). func (, , uint) (, uint) { if UintSize == 32 { , := Div32(uint32(), uint32(), uint32()) return uint(), uint() } , := Div64(uint64(), uint64(), uint64()) return uint(), uint() } // Div32 returns the quotient and remainder of (hi, lo) divided by y: // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper // half in parameter hi and the lower half in parameter lo. // Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). func (, , uint32) (, uint32) { if != 0 && <= { panic(overflowError) } := uint64()<<32 | uint64() , = uint32(/uint64()), uint32(%uint64()) return } // Div64 returns the quotient and remainder of (hi, lo) divided by y: // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper // half in parameter hi and the lower half in parameter lo. // Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). func (, , uint64) (, uint64) { if == 0 { panic(divideError) } if <= { panic(overflowError) } // If high part is zero, we can directly return the results. if == 0 { return / , % } := uint(LeadingZeros64()) <<= const ( = 1 << 32 = - 1 ) := >> 32 := & := << | >>(64-) := << := >> 32 := & := / := - * for >= || * > *+ { -- += if >= { break } } := * + - * := / = - * for >= || * > *+ { -- += if >= { break } } return * + , (* + - *) >> } // Rem returns the remainder of (hi, lo) divided by y. Rem panics for // y == 0 (division by zero) but, unlike Div, it doesn't panic on a // quotient overflow. func (, , uint) uint { if UintSize == 32 { return uint(Rem32(uint32(), uint32(), uint32())) } return uint(Rem64(uint64(), uint64(), uint64())) } // Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics // for y == 0 (division by zero) but, unlike [Div32], it doesn't panic // on a quotient overflow. func (, , uint32) uint32 { return uint32((uint64()<<32 | uint64()) % uint64()) } // Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics // for y == 0 (division by zero) but, unlike [Div64], it doesn't panic // on a quotient overflow. func (, , uint64) uint64 { // We scale down hi so that hi < y, then use Div64 to compute the // rem with the guarantee that it won't panic on quotient overflow. // Given that // hi ≡ hi%y (mod y) // we have // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y) , := Div64(%, , ) return }