// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// MakeFunc implementation.

package reflect

import (
	
	
)

// makeFuncImpl is the closure value implementing the function
// returned by MakeFunc.
// The first three words of this type must be kept in sync with
// methodValue and runtime.reflectMethodValue.
// Any changes should be reflected in all three.
type makeFuncImpl struct {
	makeFuncCtxt
	ftyp *funcType
	fn   func([]Value) []Value
}

// MakeFunc returns a new function of the given [Type]
// that wraps the function fn. When called, that new function
// does the following:
//
//   - converts its arguments to a slice of Values.
//   - runs results := fn(args).
//   - returns the results as a slice of Values, one per formal result.
//
// The implementation fn can assume that the argument [Value] slice
// has the number and type of arguments given by typ.
// If typ describes a variadic function, the final Value is itself
// a slice representing the variadic arguments, as in the
// body of a variadic function. The result Value slice returned by fn
// must have the number and type of results given by typ.
//
// The [Value.Call] method allows the caller to invoke a typed function
// in terms of Values; in contrast, MakeFunc allows the caller to implement
// a typed function in terms of Values.
//
// The Examples section of the documentation includes an illustration
// of how to use MakeFunc to build a swap function for different types.
func ( Type,  func( []Value) ( []Value)) Value {
	if .Kind() != Func {
		panic("reflect: call of MakeFunc with non-Func type")
	}

	 := .common()
	 := (*funcType)(unsafe.Pointer())

	 := abi.FuncPCABI0(makeFuncStub)

	// makeFuncImpl contains a stack map for use by the runtime
	, ,  := funcLayout(, nil)

	 := &makeFuncImpl{
		makeFuncCtxt: makeFuncCtxt{
			fn:      ,
			stack:   .stackPtrs,
			argLen:  .stackCallArgsSize,
			regPtrs: .inRegPtrs,
		},
		ftyp: ,
		fn:   ,
	}

	return Value{, unsafe.Pointer(), flag(Func)}
}

// makeFuncStub is an assembly function that is the code half of
// the function returned from MakeFunc. It expects a *callReflectFunc
// as its context register, and its job is to invoke callReflect(ctxt, frame)
// where ctxt is the context register and frame is a pointer to the first
// word in the passed-in argument frame.
func makeFuncStub()

// The first 3 words of this type must be kept in sync with
// makeFuncImpl and runtime.reflectMethodValue.
// Any changes should be reflected in all three.
type methodValue struct {
	makeFuncCtxt
	method int
	rcvr   Value
}

// makeMethodValue converts v from the rcvr+method index representation
// of a method value to an actual method func value, which is
// basically the receiver value with a special bit set, into a true
// func value - a value holding an actual func. The output is
// semantically equivalent to the input as far as the user of package
// reflect can tell, but the true func representation can be handled
// by code like Convert and Interface and Assign.
func makeMethodValue( string,  Value) Value {
	if .flag&flagMethod == 0 {
		panic("reflect: internal error: invalid use of makeMethodValue")
	}

	// Ignoring the flagMethod bit, v describes the receiver, not the method type.
	 := .flag & (flagRO | flagAddr | flagIndir)
	 |= flag(.typ().Kind())
	 := Value{.typ(), .ptr, }

	// v.Type returns the actual type of the method value.
	 := (*funcType)(unsafe.Pointer(.Type().(*rtype)))

	 := methodValueCallCodePtr()

	// methodValue contains a stack map for use by the runtime
	, ,  := funcLayout(, nil)
	 := &methodValue{
		makeFuncCtxt: makeFuncCtxt{
			fn:      ,
			stack:   .stackPtrs,
			argLen:  .stackCallArgsSize,
			regPtrs: .inRegPtrs,
		},
		method: int(.flag) >> flagMethodShift,
		rcvr:   ,
	}

	// Cause panic if method is not appropriate.
	// The panic would still happen during the call if we omit this,
	// but we want Interface() and other operations to fail early.
	methodReceiver(, .rcvr, .method)

	return Value{.Common(), unsafe.Pointer(), .flag&flagRO | flag(Func)}
}

func methodValueCallCodePtr() uintptr {
	return abi.FuncPCABI0(methodValueCall)
}

// methodValueCall is an assembly function that is the code half of
// the function returned from makeMethodValue. It expects a *methodValue
// as its context register, and its job is to invoke callMethod(ctxt, frame)
// where ctxt is the context register and frame is a pointer to the first
// word in the passed-in argument frame.
func methodValueCall()

// This structure must be kept in sync with runtime.reflectMethodValue.
// Any changes should be reflected in all both.
type makeFuncCtxt struct {
	fn      uintptr
	stack   *bitVector // ptrmap for both stack args and results
	argLen  uintptr    // just args
	regPtrs abi.IntArgRegBitmap
}

// moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments
// in args.Ints to args.Ptrs where the GC can see them.
//
// This is similar to what reflectcallmove does in the runtime, except
// that happens on the return path, whereas this happens on the call path.
//
// nosplit because pointers are being held in uintptr slots in args, so
// having our stack scanned now could lead to accidentally freeing
// memory.
//
//go:nosplit
func moveMakeFuncArgPtrs( *makeFuncCtxt,  *abi.RegArgs) {
	for ,  := range .Ints {
		// Avoid write barriers! Because our write barrier enqueues what
		// was there before, we might enqueue garbage.
		if .regPtrs.Get() {
			*(*uintptr)(unsafe.Pointer(&.Ptrs[])) = 
		} else {
			// We *must* zero this space ourselves because it's defined in
			// assembly code and the GC will scan these pointers. Otherwise,
			// there will be garbage here.
			*(*uintptr)(unsafe.Pointer(&.Ptrs[])) = 0
		}
	}
}