// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package utf8 implements functions and constants to support text encoded in // UTF-8. It includes functions to translate between runes and UTF-8 byte sequences. // See https://en.wikipedia.org/wiki/UTF-8
package utf8 // The conditions RuneError==unicode.ReplacementChar and // MaxRune==unicode.MaxRune are verified in the tests. // Defining them locally avoids this package depending on package unicode. // Numbers fundamental to the encoding. const ( RuneError = '\uFFFD' // the "error" Rune or "Unicode replacement character" RuneSelf = 0x80 // characters below RuneSelf are represented as themselves in a single byte. MaxRune = '\U0010FFFF' // Maximum valid Unicode code point. UTFMax = 4 // maximum number of bytes of a UTF-8 encoded Unicode character. ) // Code points in the surrogate range are not valid for UTF-8. const ( surrogateMin = 0xD800 surrogateMax = 0xDFFF ) const ( t1 = 0b00000000 tx = 0b10000000 t2 = 0b11000000 t3 = 0b11100000 t4 = 0b11110000 t5 = 0b11111000 maskx = 0b00111111 mask2 = 0b00011111 mask3 = 0b00001111 mask4 = 0b00000111 rune1Max = 1<<7 - 1 rune2Max = 1<<11 - 1 rune3Max = 1<<16 - 1 // The default lowest and highest continuation byte. locb = 0b10000000 hicb = 0b10111111 // These names of these constants are chosen to give nice alignment in the // table below. The first nibble is an index into acceptRanges or F for // special one-byte cases. The second nibble is the Rune length or the // Status for the special one-byte case. xx = 0xF1 // invalid: size 1 as = 0xF0 // ASCII: size 1 s1 = 0x02 // accept 0, size 2 s2 = 0x13 // accept 1, size 3 s3 = 0x03 // accept 0, size 3 s4 = 0x23 // accept 2, size 3 s5 = 0x34 // accept 3, size 4 s6 = 0x04 // accept 0, size 4 s7 = 0x44 // accept 4, size 4 ) const ( runeErrorByte0 = t3 | (RuneError >> 12) runeErrorByte1 = tx | (RuneError>>6)&maskx runeErrorByte2 = tx | RuneError&maskx ) // first is information about the first byte in a UTF-8 sequence. var first = [256]uint8{ // 1 2 3 4 5 6 7 8 9 A B C D E F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x00-0x0F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x10-0x1F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x20-0x2F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x30-0x3F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x40-0x4F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x50-0x5F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x60-0x6F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x70-0x7F // 1 2 3 4 5 6 7 8 9 A B C D E F xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x80-0x8F xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x90-0x9F xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xA0-0xAF xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xB0-0xBF xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xC0-0xCF s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xD0-0xDF s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, // 0xE0-0xEF s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xF0-0xFF } // acceptRange gives the range of valid values for the second byte in a UTF-8 // sequence. type acceptRange struct { lo uint8 // lowest value for second byte. hi uint8 // highest value for second byte. } // acceptRanges has size 16 to avoid bounds checks in the code that uses it. var acceptRanges = [16]acceptRange{ 0: {locb, hicb}, 1: {0xA0, hicb}, 2: {locb, 0x9F}, 3: {0x90, hicb}, 4: {locb, 0x8F}, } // FullRune reports whether the bytes in p begin with a full UTF-8 encoding of a rune. // An invalid encoding is considered a full Rune since it will convert as a width-1 error rune. func ( []byte) bool { := len() if == 0 { return false } := first[[0]] if >= int(&7) { return true // ASCII, invalid or valid. } // Must be short or invalid. := acceptRanges[>>4] if > 1 && ([1] < .lo || .hi < [1]) { return true } else if > 2 && ([2] < locb || hicb < [2]) { return true } return false } // FullRuneInString is like FullRune but its input is a string. func ( string) bool { := len() if == 0 { return false } := first[[0]] if >= int(&7) { return true // ASCII, invalid, or valid. } // Must be short or invalid. := acceptRanges[>>4] if > 1 && ([1] < .lo || .hi < [1]) { return true } else if > 2 && ([2] < locb || hicb < [2]) { return true } return false } // DecodeRune unpacks the first UTF-8 encoding in p and returns the rune and // its width in bytes. If p is empty it returns ([RuneError], 0). Otherwise, if // the encoding is invalid, it returns (RuneError, 1). Both are impossible // results for correct, non-empty UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func ( []byte) ( rune, int) { := len() if < 1 { return RuneError, 0 } := [0] := first[] if >= as { // The following code simulates an additional check for x == xx and // handling the ASCII and invalid cases accordingly. This mask-and-or // approach prevents an additional branch. := rune() << 31 >> 31 // Create 0x0000 or 0xFFFF. return rune([0])&^ | RuneError&, 1 } := int( & 7) := acceptRanges[>>4] if < { return RuneError, 1 } := [1] if < .lo || .hi < { return RuneError, 1 } if <= 2 { // <= instead of == to help the compiler eliminate some bounds checks return rune(&mask2)<<6 | rune(&maskx), 2 } := [2] if < locb || hicb < { return RuneError, 1 } if <= 3 { return rune(&mask3)<<12 | rune(&maskx)<<6 | rune(&maskx), 3 } := [3] if < locb || hicb < { return RuneError, 1 } return rune(&mask4)<<18 | rune(&maskx)<<12 | rune(&maskx)<<6 | rune(&maskx), 4 } // DecodeRuneInString is like [DecodeRune] but its input is a string. If s is // empty it returns ([RuneError], 0). Otherwise, if the encoding is invalid, it // returns (RuneError, 1). Both are impossible results for correct, non-empty // UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func ( string) ( rune, int) { := len() if < 1 { return RuneError, 0 } := [0] := first[] if >= as { // The following code simulates an additional check for x == xx and // handling the ASCII and invalid cases accordingly. This mask-and-or // approach prevents an additional branch. := rune() << 31 >> 31 // Create 0x0000 or 0xFFFF. return rune([0])&^ | RuneError&, 1 } := int( & 7) := acceptRanges[>>4] if < { return RuneError, 1 } := [1] if < .lo || .hi < { return RuneError, 1 } if <= 2 { // <= instead of == to help the compiler eliminate some bounds checks return rune(&mask2)<<6 | rune(&maskx), 2 } := [2] if < locb || hicb < { return RuneError, 1 } if <= 3 { return rune(&mask3)<<12 | rune(&maskx)<<6 | rune(&maskx), 3 } := [3] if < locb || hicb < { return RuneError, 1 } return rune(&mask4)<<18 | rune(&maskx)<<12 | rune(&maskx)<<6 | rune(&maskx), 4 } // DecodeLastRune unpacks the last UTF-8 encoding in p and returns the rune and // its width in bytes. If p is empty it returns ([RuneError], 0). Otherwise, if // the encoding is invalid, it returns (RuneError, 1). Both are impossible // results for correct, non-empty UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func ( []byte) ( rune, int) { := len() if == 0 { return RuneError, 0 } := - 1 = rune([]) if < RuneSelf { return , 1 } // guard against O(n^2) behavior when traversing // backwards through strings with long sequences of // invalid UTF-8. := - UTFMax if < 0 { = 0 } for --; >= ; -- { if RuneStart([]) { break } } if < 0 { = 0 } , = DecodeRune([:]) if + != { return RuneError, 1 } return , } // DecodeLastRuneInString is like [DecodeLastRune] but its input is a string. If // s is empty it returns ([RuneError], 0). Otherwise, if the encoding is invalid, // it returns (RuneError, 1). Both are impossible results for correct, // non-empty UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func ( string) ( rune, int) { := len() if == 0 { return RuneError, 0 } := - 1 = rune([]) if < RuneSelf { return , 1 } // guard against O(n^2) behavior when traversing // backwards through strings with long sequences of // invalid UTF-8. := - UTFMax if < 0 { = 0 } for --; >= ; -- { if RuneStart([]) { break } } if < 0 { = 0 } , = DecodeRuneInString([:]) if + != { return RuneError, 1 } return , } // RuneLen returns the number of bytes in the UTF-8 encoding of the rune. // It returns -1 if the rune is not a valid value to encode in UTF-8. func ( rune) int { switch { case < 0: return -1 case <= rune1Max: return 1 case <= rune2Max: return 2 case surrogateMin <= && <= surrogateMax: return -1 case <= rune3Max: return 3 case <= MaxRune: return 4 } return -1 } // EncodeRune writes into p (which must be large enough) the UTF-8 encoding of the rune. // If the rune is out of range, it writes the encoding of [RuneError]. // It returns the number of bytes written. func ( []byte, rune) int { // This function is inlineable for fast handling of ASCII. if uint32() <= rune1Max { [0] = byte() return 1 } return encodeRuneNonASCII(, ) } func encodeRuneNonASCII( []byte, rune) int { // Negative values are erroneous. Making it unsigned addresses the problem. switch := uint32(); { case <= rune2Max: _ = [1] // eliminate bounds checks [0] = t2 | byte(>>6) [1] = tx | byte()&maskx return 2 case < surrogateMin, surrogateMax < && <= rune3Max: _ = [2] // eliminate bounds checks [0] = t3 | byte(>>12) [1] = tx | byte(>>6)&maskx [2] = tx | byte()&maskx return 3 case > rune3Max && <= MaxRune: _ = [3] // eliminate bounds checks [0] = t4 | byte(>>18) [1] = tx | byte(>>12)&maskx [2] = tx | byte(>>6)&maskx [3] = tx | byte()&maskx return 4 default: _ = [2] // eliminate bounds checks [0] = runeErrorByte0 [1] = runeErrorByte1 [2] = runeErrorByte2 return 3 } } // AppendRune appends the UTF-8 encoding of r to the end of p and // returns the extended buffer. If the rune is out of range, // it appends the encoding of [RuneError]. func ( []byte, rune) []byte { // This function is inlineable for fast handling of ASCII. if uint32() <= rune1Max { return append(, byte()) } return appendRuneNonASCII(, ) } func appendRuneNonASCII( []byte, rune) []byte { // Negative values are erroneous. Making it unsigned addresses the problem. switch := uint32(); { case <= rune2Max: return append(, t2|byte(>>6), tx|byte()&maskx) case < surrogateMin, surrogateMax < && <= rune3Max: return append(, t3|byte(>>12), tx|byte(>>6)&maskx, tx|byte()&maskx) case > rune3Max && <= MaxRune: return append(, t4|byte(>>18), tx|byte(>>12)&maskx, tx|byte(>>6)&maskx, tx|byte()&maskx) default: return append(, runeErrorByte0, runeErrorByte1, runeErrorByte2) } } // RuneCount returns the number of runes in p. Erroneous and short // encodings are treated as single runes of width 1 byte. func ( []byte) int { := len() var int for ; < ; ++ { if := []; >= RuneSelf { // non-ASCII slow path return + RuneCountInString(string([:])) } } return } // RuneCountInString is like [RuneCount] but its input is a string. func ( string) ( int) { for range { ++ } return } // RuneStart reports whether the byte could be the first byte of an encoded, // possibly invalid rune. Second and subsequent bytes always have the top two // bits set to 10. func ( byte) bool { return &0xC0 != 0x80 } // Valid reports whether p consists entirely of valid UTF-8-encoded runes. func ( []byte) bool { // This optimization avoids the need to recompute the capacity // when generating code for p[8:], bringing it to parity with // ValidString, which was 20% faster on long ASCII strings. = [:len():len()] // Fast path. Check for and skip 8 bytes of ASCII characters per iteration. for len() >= 8 { // Combining two 32 bit loads allows the same code to be used // for 32 and 64 bit platforms. // The compiler can generate a 32bit load for first32 and second32 // on many platforms. See test/codegen/memcombine.go. := uint32([0]) | uint32([1])<<8 | uint32([2])<<16 | uint32([3])<<24 := uint32([4]) | uint32([5])<<8 | uint32([6])<<16 | uint32([7])<<24 if (|)&0x80808080 != 0 { // Found a non ASCII byte (>= RuneSelf). break } = [8:] } := len() for := 0; < ; { := [] if < RuneSelf { ++ continue } := first[] if == xx { return false // Illegal starter byte. } := int( & 7) if + > { return false // Short or invalid. } := acceptRanges[>>4] if := [+1]; < .lo || .hi < { return false } else if == 2 { } else if := [+2]; < locb || hicb < { return false } else if == 3 { } else if := [+3]; < locb || hicb < { return false } += } return true } // ValidString reports whether s consists entirely of valid UTF-8-encoded runes. func ( string) bool { // Fast path. Check for and skip 8 bytes of ASCII characters per iteration. for len() >= 8 { // Combining two 32 bit loads allows the same code to be used // for 32 and 64 bit platforms. // The compiler can generate a 32bit load for first32 and second32 // on many platforms. See test/codegen/memcombine.go. := uint32([0]) | uint32([1])<<8 | uint32([2])<<16 | uint32([3])<<24 := uint32([4]) | uint32([5])<<8 | uint32([6])<<16 | uint32([7])<<24 if (|)&0x80808080 != 0 { // Found a non ASCII byte (>= RuneSelf). break } = [8:] } := len() for := 0; < ; { := [] if < RuneSelf { ++ continue } := first[] if == xx { return false // Illegal starter byte. } := int( & 7) if + > { return false // Short or invalid. } := acceptRanges[>>4] if := [+1]; < .lo || .hi < { return false } else if == 2 { } else if := [+2]; < locb || hicb < { return false } else if == 3 { } else if := [+3]; < locb || hicb < { return false } += } return true } // ValidRune reports whether r can be legally encoded as UTF-8. // Code points that are out of range or a surrogate half are illegal. func ( rune) bool { switch { case 0 <= && < surrogateMin: return true case surrogateMax < && <= MaxRune: return true } return false }