// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bigmod

import (
	_ 
	
	
	
)

const (
	// _W is the size in bits of our limbs.
	_W = bits.UintSize
	// _S is the size in bytes of our limbs.
	_S = _W / 8
)

// Note: These functions make many loops over all the words in a Nat.
// These loops used to be in assembly, invisible to -race, -asan, and -msan,
// but now they are in Go and incur significant overhead in those modes.
// To bring the old performance back, we mark all functions that loop
// over Nat words with //go:norace. Because //go:norace does not
// propagate across inlining, we must also mark functions that inline
// //go:norace functions - specifically, those that inline add, addMulVVW,
// assign, cmpGeq, rshift1, and sub.

// choice represents a constant-time boolean. The value of choice is always
// either 1 or 0. We use an int instead of bool in order to make decisions in
// constant time by turning it into a mask.
type choice uint

func not( choice) choice { return 1 ^  }

const yes = choice(1)
const no = choice(0)

// ctMask is all 1s if on is yes, and all 0s otherwise.
func ctMask( choice) uint { return -uint() }

// ctEq returns 1 if x == y, and 0 otherwise. The execution time of this
// function does not depend on its inputs.
func ctEq(,  uint) choice {
	// If x != y, then either x - y or y - x will generate a carry.
	,  := bits.Sub(, , 0)
	,  := bits.Sub(, , 0)
	return not(choice( | ))
}

// Nat represents an arbitrary natural number
//
// Each Nat has an announced length, which is the number of limbs it has stored.
// Operations on this number are allowed to leak this length, but will not leak
// any information about the values contained in those limbs.
type Nat struct {
	// limbs is little-endian in base 2^W with W = bits.UintSize.
	limbs []uint
}

// preallocTarget is the size in bits of the numbers used to implement the most
// common and most performant RSA key size. It's also enough to cover some of
// the operations of key sizes up to 4096.
const preallocTarget = 2048
const preallocLimbs = (preallocTarget + _W - 1) / _W

// NewNat returns a new nat with a size of zero, just like new(Nat), but with
// the preallocated capacity to hold a number of up to preallocTarget bits.
// NewNat inlines, so the allocation can live on the stack.
func () *Nat {
	 := make([]uint, 0, preallocLimbs)
	return &Nat{}
}

// expand expands x to n limbs, leaving its value unchanged.
func ( *Nat) ( int) *Nat {
	if len(.limbs) >  {
		panic("bigmod: internal error: shrinking nat")
	}
	if cap(.limbs) <  {
		 := make([]uint, )
		copy(, .limbs)
		.limbs = 
		return 
	}
	 := .limbs[len(.limbs):]
	clear()
	.limbs = .limbs[:]
	return 
}

// reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs).
func ( *Nat) ( int) *Nat {
	if cap(.limbs) <  {
		.limbs = make([]uint, )
		return 
	}
	clear(.limbs)
	.limbs = .limbs[:]
	return 
}

// resetToBytes assigns x = b, where b is a slice of big-endian bytes, resizing
// n to the appropriate size.
//
// The announced length of x is set based on the actual bit size of the input,
// ignoring leading zeroes.
func ( *Nat) ( []byte) *Nat {
	.reset((len() + _S - 1) / _S)
	if  := .setBytes();  != nil {
		panic("bigmod: internal error: bad arithmetic")
	}
	return .trim()
}

// trim reduces the size of x to match its value.
func ( *Nat) () *Nat {
	// Trim most significant (trailing in little-endian) zero limbs.
	// We assume comparison with zero (but not the branch) is constant time.
	for  := len(.limbs) - 1;  >= 0; -- {
		if .limbs[] != 0 {
			break
		}
		.limbs = .limbs[:]
	}
	return 
}

// set assigns x = y, optionally resizing x to the appropriate size.
func ( *Nat) ( *Nat) *Nat {
	.reset(len(.limbs))
	copy(.limbs, .limbs)
	return 
}

// Bytes returns x as a zero-extended big-endian byte slice. The size of the
// slice will match the size of m.
//
// x must have the same size as m and it must be less than or equal to m.
func ( *Nat) ( *Modulus) []byte {
	 := .Size()
	 := make([]byte, )
	for ,  := range .limbs {
		for  := 0;  < _S; ++ {
			--
			if  < 0 {
				if  == 0 {
					break
				}
				panic("bigmod: modulus is smaller than nat")
			}
			[] = byte()
			 >>= 8
		}
	}
	return 
}

// SetBytes assigns x = b, where b is a slice of big-endian bytes.
// SetBytes returns an error if b >= m.
//
// The output will be resized to the size of m and overwritten.
//
//go:norace
func ( *Nat) ( []byte,  *Modulus) (*Nat, error) {
	.resetFor()
	if  := .setBytes();  != nil {
		return nil, 
	}
	if .cmpGeq(.nat) == yes {
		return nil, errors.New("input overflows the modulus")
	}
	return , nil
}

// SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes.
// SetOverflowingBytes returns an error if b has a longer bit length than m, but
// reduces overflowing values up to 2^⌈log2(m)⌉ - 1.
//
// The output will be resized to the size of m and overwritten.
func ( *Nat) ( []byte,  *Modulus) (*Nat, error) {
	.resetFor()
	if  := .setBytes();  != nil {
		return nil, 
	}
	// setBytes would have returned an error if the input overflowed the limb
	// size of the modulus, so now we only need to check if the most significant
	// limb of x has more bits than the most significant limb of the modulus.
	if bitLen(.limbs[len(.limbs)-1]) > bitLen(.nat.limbs[len(.nat.limbs)-1]) {
		return nil, errors.New("input overflows the modulus size")
	}
	.maybeSubtractModulus(no, )
	return , nil
}

// bigEndianUint returns the contents of buf interpreted as a
// big-endian encoded uint value.
func bigEndianUint( []byte) uint {
	if _W == 64 {
		return uint(byteorder.BEUint64())
	}
	return uint(byteorder.BEUint32())
}

func ( *Nat) ( []byte) error {
	,  := len(), 0
	for  < len(.limbs) &&  >= _S {
		.limbs[] = bigEndianUint([-_S : ])
		 -= _S
		++
	}
	for  := 0;  < _W &&  < len(.limbs) &&  > 0;  += 8 {
		.limbs[] |= uint([-1]) << 
		--
	}
	if  > 0 {
		return errors.New("input overflows the modulus size")
	}
	return nil
}

// SetUint assigns x = y.
//
// The output will be resized to a single limb and overwritten.
func ( *Nat) ( uint) *Nat {
	.reset(1)
	.limbs[0] = 
	return 
}

// Equal returns 1 if x == y, and 0 otherwise.
//
// Both operands must have the same announced length.
//
//go:norace
func ( *Nat) ( *Nat) choice {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]
	 := .limbs[:]

	 := yes
	for  := 0;  < ; ++ {
		 &= ctEq([], [])
	}
	return 
}

// IsZero returns 1 if x == 0, and 0 otherwise.
//
//go:norace
func ( *Nat) () choice {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]

	 := yes
	for  := 0;  < ; ++ {
		 &= ctEq([], 0)
	}
	return 
}

// IsOne returns 1 if x == 1, and 0 otherwise.
//
//go:norace
func ( *Nat) () choice {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]

	if len() == 0 {
		return no
	}

	 := ctEq([0], 1)
	for  := 1;  < ; ++ {
		 &= ctEq([], 0)
	}
	return 
}

// IsMinusOne returns 1 if x == -1 mod m, and 0 otherwise.
//
// The length of x must be the same as the modulus. x must already be reduced
// modulo m.
//
//go:norace
func ( *Nat) ( *Modulus) choice {
	 := .Nat()
	.SubOne()
	return .Equal()
}

// IsOdd returns 1 if x is odd, and 0 otherwise.
func ( *Nat) () choice {
	if len(.limbs) == 0 {
		return no
	}
	return choice(.limbs[0] & 1)
}

// TrailingZeroBitsVarTime returns the number of trailing zero bits in x.
func ( *Nat) () uint {
	var  uint
	 := .limbs
	for ,  := range  {
		if  == 0 {
			 += _W
			continue
		}
		 += uint(bits.TrailingZeros())
		break
	}
	return 
}

// cmpGeq returns 1 if x >= y, and 0 otherwise.
//
// Both operands must have the same announced length.
//
//go:norace
func ( *Nat) ( *Nat) choice {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]
	 := .limbs[:]

	var  uint
	for  := 0;  < ; ++ {
		_,  = bits.Sub([], [], )
	}
	// If there was a carry, then subtracting y underflowed, so
	// x is not greater than or equal to y.
	return not(choice())
}

// assign sets x <- y if on == 1, and does nothing otherwise.
//
// Both operands must have the same announced length.
//
//go:norace
func ( *Nat) ( choice,  *Nat) *Nat {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]
	 := .limbs[:]

	 := ctMask()
	for  := 0;  < ; ++ {
		[] ^=  & ([] ^ [])
	}
	return 
}

// add computes x += y and returns the carry.
//
// Both operands must have the same announced length.
//
//go:norace
func ( *Nat) ( *Nat) ( uint) {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]
	 := .limbs[:]

	for  := 0;  < ; ++ {
		[],  = bits.Add([], [], )
	}
	return
}

// sub computes x -= y. It returns the borrow of the subtraction.
//
// Both operands must have the same announced length.
//
//go:norace
func ( *Nat) ( *Nat) ( uint) {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]
	 := .limbs[:]

	for  := 0;  < ; ++ {
		[],  = bits.Sub([], [], )
	}
	return
}

// ShiftRightVarTime sets x = x >> n.
//
// The announced length of x is unchanged.
//
//go:norace
func ( *Nat) ( uint) *Nat {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]

	 := int( % _W)
	 := int( / _W)

	var  []uint
	if  <  {
		 = [:]
	}

	for  := range  {
		if  >= len() {
			[] = 0
			continue
		}

		[] = [] >> 
		if +1 < len() {
			[] |= [+1] << (_W - )
		}
	}

	return 
}

// BitLenVarTime returns the actual size of x in bits.
//
// The actual size of x (but nothing more) leaks through timing side-channels.
// Note that this is ordinarily secret, as opposed to the announced size of x.
func ( *Nat) () int {
	// Eliminate bounds checks in the loop.
	 := len(.limbs)
	 := .limbs[:]

	for  :=  - 1;  >= 0; -- {
		if [] != 0 {
			return *_W + bitLen([])
		}
	}
	return 0
}

// bitLen is a version of bits.Len that only leaks the bit length of n, but not
// its value. bits.Len and bits.LeadingZeros use a lookup table for the
// low-order bits on some architectures.
func bitLen( uint) int {
	 := 0
	// We assume, here and elsewhere, that comparison to zero is constant time
	// with respect to different non-zero values.
	for  != 0 {
		++
		 >>= 1
	}
	return 
}

// Modulus is used for modular arithmetic, precomputing relevant constants.
//
// A Modulus can leak the exact number of bits needed to store its value
// and is stored without padding. Its actual value is still kept secret.
type Modulus struct {
	// The underlying natural number for this modulus.
	//
	// This will be stored without any padding, and shouldn't alias with any
	// other natural number being used.
	nat *Nat

	// If m is even, the following fields are not set.
	odd   bool
	m0inv uint // -nat.limbs[0]⁻¹ mod _W
	rr    *Nat // R*R for montgomeryRepresentation
}

// rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs).
func rr( *Modulus) *Nat {
	 := NewNat().ExpandFor()
	 := uint(len(.limbs))
	 := uint(.BitLen())
	 := _W * 

	// We start by computing R = 2^(_W * n) mod m. We can get pretty close, to
	// 2^⌊log₂m⌋, by setting the highest bit we can without having to reduce.
	.limbs[-1] = 1 << (( - 1) % _W)
	// Then we double until we reach 2^(_W * n).
	for  :=  - 1;  < ; ++ {
		.Add(, )
	}

	// Next we need to get from R to 2^(_W * n) R mod m (aka from one to R in
	// the Montgomery domain, meaning we can use Montgomery multiplication now).
	// We could do that by doubling _W * n times, or with a square-and-double
	// chain log2(_W * n) long. Turns out the fastest thing is to start out with
	// doublings, and switch to square-and-double once the exponent is large
	// enough to justify the cost of the multiplications.

	// The threshold is selected experimentally as a linear function of n.
	 :=  / 4

	// We calculate how many of the most-significant bits of the exponent we can
	// compute before crossing the threshold, and we do it with doublings.
	 := bits.UintSize
	for >> <=  {
		--
	}
	for  := uint(0);  < >>; ++ {
		.Add(, )
	}

	// Then we process the remaining bits of the exponent with a
	// square-and-double chain.
	for  > 0 {
		.montgomeryMul(, , )
		--
		if >>&1 != 0 {
			.Add(, )
		}
	}

	return 
}

// minusInverseModW computes -x⁻¹ mod _W with x odd.
//
// This operation is used to precompute a constant involved in Montgomery
// multiplication.
func minusInverseModW( uint) uint {
	// Every iteration of this loop doubles the least-significant bits of
	// correct inverse in y. The first three bits are already correct (1⁻¹ = 1,
	// 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough
	// for 64 bits (and wastes only one iteration for 32 bits).
	//
	// See https://crypto.stackexchange.com/a/47496.
	 := 
	for  := 0;  < 5; ++ {
		 =  * (2 - *)
	}
	return -
}

// NewModulus creates a new Modulus from a slice of big-endian bytes. The
// modulus must be greater than one.
//
// The number of significant bits and whether the modulus is even is leaked
// through timing side-channels.
func ( []byte) (*Modulus, error) {
	 := NewNat().resetToBytes()
	return newModulus()
}

// NewModulusProduct creates a new Modulus from the product of two numbers
// represented as big-endian byte slices. The result must be greater than one.
//
//go:norace
func (,  []byte) (*Modulus, error) {
	 := NewNat().resetToBytes()
	 := NewNat().resetToBytes()
	 := NewNat().reset(len(.limbs) + len(.limbs))
	for  := range .limbs {
		.limbs[+len(.limbs)] = addMulVVW(.limbs[:+len(.limbs)], .limbs, .limbs[])
	}
	return newModulus(.trim())
}

func newModulus( *Nat) (*Modulus, error) {
	 := &Modulus{nat: }
	if .nat.IsZero() == yes || .nat.IsOne() == yes {
		return nil, errors.New("modulus must be > 1")
	}
	if .nat.IsOdd() == 1 {
		.odd = true
		.m0inv = minusInverseModW(.nat.limbs[0])
		.rr = rr()
	}
	return , nil
}

// Size returns the size of m in bytes.
func ( *Modulus) () int {
	return (.BitLen() + 7) / 8
}

// BitLen returns the size of m in bits.
func ( *Modulus) () int {
	return .nat.BitLenVarTime()
}

// Nat returns m as a Nat.
func ( *Modulus) () *Nat {
	// Make a copy so that the caller can't modify m.nat or alias it with
	// another Nat in a modulus operation.
	 := NewNat()
	.set(.nat)
	return 
}

// shiftIn calculates x = x << _W + y mod m.
//
// This assumes that x is already reduced mod m.
//
//go:norace
func ( *Nat) ( uint,  *Modulus) *Nat {
	 := NewNat().resetFor()

	// Eliminate bounds checks in the loop.
	 := len(.nat.limbs)
	 := .limbs[:]
	 := .limbs[:]
	 := .nat.limbs[:]

	// Each iteration of this loop computes x = 2x + b mod m, where b is a bit
	// from y. Effectively, it left-shifts x and adds y one bit at a time,
	// reducing it every time.
	//
	// To do the reduction, each iteration computes both 2x + b and 2x + b - m.
	// The next iteration (and finally the return line) will use either result
	// based on whether 2x + b overflows m.
	 := no
	for  := _W - 1;  >= 0; -- {
		 := ( >> ) & 1
		var  uint
		 := ctMask()
		for  := 0;  < ; ++ {
			 := [] ^ ( & ([] ^ []))
			[],  = bits.Add(, , )
			[],  = bits.Sub([], [], )
		}
		// Like in maybeSubtractModulus, we need the subtraction if either it
		// didn't underflow (meaning 2x + b > m) or if computing 2x + b
		// overflowed (meaning 2x + b > 2^_W*n > m).
		 = not(choice()) | choice()
	}
	return .assign(, )
}

// Mod calculates out = x mod m.
//
// This works regardless how large the value of x is.
//
// The output will be resized to the size of m and overwritten.
//
//go:norace
func ( *Nat) ( *Nat,  *Modulus) *Nat {
	.resetFor()
	// Working our way from the most significant to the least significant limb,
	// we can insert each limb at the least significant position, shifting all
	// previous limbs left by _W. This way each limb will get shifted by the
	// correct number of bits. We can insert at least N - 1 limbs without
	// overflowing m. After that, we need to reduce every time we shift.
	 := len(.limbs) - 1
	// For the first N - 1 limbs we can skip the actual shifting and position
	// them at the shifted position, which starts at min(N - 2, i).
	 := len(.nat.limbs) - 2
	if  <  {
		 = 
	}
	for  := ;  >= 0; -- {
		.limbs[] = .limbs[]
		--
	}
	// We shift in the remaining limbs, reducing modulo m each time.
	for  >= 0 {
		.shiftIn(.limbs[], )
		--
	}
	return 
}

// ExpandFor ensures x has the right size to work with operations modulo m.
//
// The announced size of x must be smaller than or equal to that of m.
func ( *Nat) ( *Modulus) *Nat {
	return .expand(len(.nat.limbs))
}

// resetFor ensures out has the right size to work with operations modulo m.
//
// out is zeroed and may start at any size.
func ( *Nat) ( *Modulus) *Nat {
	return .reset(len(.nat.limbs))
}

// maybeSubtractModulus computes x -= m if and only if x >= m or if "always" is yes.
//
// It can be used to reduce modulo m a value up to 2m - 1, which is a common
// range for results computed by higher level operations.
//
// always is usually a carry that indicates that the operation that produced x
// overflowed its size, meaning abstractly x > 2^_W*n > m even if x < m.
//
// x and m operands must have the same announced length.
//
//go:norace
func ( *Nat) ( choice,  *Modulus) {
	 := NewNat().set()
	 := .sub(.nat)
	// We keep the result if x - m didn't underflow (meaning x >= m)
	// or if always was set.
	 := not(choice()) | choice()
	.assign(, )
}

// Sub computes x = x - y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
//
//go:norace
func ( *Nat) ( *Nat,  *Modulus) *Nat {
	 := .sub()
	// If the subtraction underflowed, add m.
	 := NewNat().set()
	.add(.nat)
	.assign(choice(), )
	return 
}

// SubOne computes x = x - 1 mod m.
//
// The length of x must be the same as the modulus.
func ( *Nat) ( *Modulus) *Nat {
	 := NewNat().ExpandFor()
	.limbs[0] = 1
	// Sub asks for x to be reduced modulo m, while SubOne doesn't, but when
	// y = 1, it works, and this is an internal use.
	return .Sub(, )
}

// Add computes x = x + y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
//
//go:norace
func ( *Nat) ( *Nat,  *Modulus) *Nat {
	 := .add()
	.maybeSubtractModulus(choice(), )
	return 
}

// montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs).
//
// Faster Montgomery multiplication replaces standard modular multiplication for
// numbers in this representation.
//
// This assumes that x is already reduced mod m.
func ( *Nat) ( *Modulus) *Nat {
	// A Montgomery multiplication (which computes a * b / R) by R * R works out
	// to a multiplication by R, which takes the value out of the Montgomery domain.
	return .montgomeryMul(, .rr, )
}

// montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs).
//
// This assumes that x is already reduced mod m.
func ( *Nat) ( *Modulus) *Nat {
	// By Montgomery multiplying with 1 not in Montgomery representation, we
	// convert out back from Montgomery representation, because it works out to
	// dividing by R.
	 := NewNat().ExpandFor()
	.limbs[0] = 1
	return .montgomeryMul(, , )
}

// montgomeryMul calculates x = a * b / R mod m, with R = 2^(_W * n) and
// n = len(m.nat.limbs), also known as a Montgomery multiplication.
//
// All inputs should be the same length and already reduced modulo m.
// x will be resized to the size of m and overwritten.
//
//go:norace
func ( *Nat) ( *Nat,  *Nat,  *Modulus) *Nat {
	 := len(.nat.limbs)
	 := .nat.limbs[:]
	 := .limbs[:]
	 := .limbs[:]

	switch  {
	default:
		// Attempt to use a stack-allocated backing array.
		 := make([]uint, 0, preallocLimbs*2)
		if cap() < *2 {
			 = make([]uint, 0, *2)
		}
		 = [:*2]

		// This loop implements Word-by-Word Montgomery Multiplication, as
		// described in Algorithm 4 (Fig. 3) of "Efficient Software
		// Implementations of Modular Exponentiation" by Shay Gueron
		// [https://eprint.iacr.org/2011/239.pdf].
		var  uint
		for  := 0;  < ; ++ {
			_ = [+] // bounds check elimination hint

			// Step 1 (T = a × b) is computed as a large pen-and-paper column
			// multiplication of two numbers with n base-2^_W digits. If we just
			// wanted to produce 2n-wide T, we would do
			//
			//   for i := 0; i < n; i++ {
			//       d := bLimbs[i]
			//       T[n+i] = addMulVVW(T[i:n+i], aLimbs, d)
			//   }
			//
			// where d is a digit of the multiplier, T[i:n+i] is the shifted
			// position of the product of that digit, and T[n+i] is the final carry.
			// Note that T[i] isn't modified after processing the i-th digit.
			//
			// Instead of running two loops, one for Step 1 and one for Steps 2–6,
			// the result of Step 1 is computed during the next loop. This is
			// possible because each iteration only uses T[i] in Step 2 and then
			// discards it in Step 6.
			 := []
			 := addMulVVW([:+], , )

			// Step 6 is replaced by shifting the virtual window we operate
			// over: T of the algorithm is T[i:] for us. That means that T1 in
			// Step 2 (T mod 2^_W) is simply T[i]. k0 in Step 3 is our m0inv.
			 := [] * .m0inv

			// Step 4 and 5 add Y × m to T, which as mentioned above is stored
			// at T[i:]. The two carries (from a × d and Y × m) are added up in
			// the next word T[n+i], and the carry bit from that addition is
			// brought forward to the next iteration.
			 := addMulVVW([:+], , )
			[+],  = bits.Add(, , )
		}

		// Finally for Step 7 we copy the final T window into x, and subtract m
		// if necessary (which as explained in maybeSubtractModulus can be the
		// case both if x >= m, or if x overflowed).
		//
		// The paper suggests in Section 4 that we can do an "Almost Montgomery
		// Multiplication" by subtracting only in the overflow case, but the
		// cost is very similar since the constant time subtraction tells us if
		// x >= m as a side effect, and taking care of the broken invariant is
		// highly undesirable (see https://go.dev/issue/13907).
		copy(.reset().limbs, [:])
		.maybeSubtractModulus(choice(), )

	// The following specialized cases follow the exact same algorithm, but
	// optimized for the sizes most used in RSA. addMulVVW is implemented in
	// assembly with loop unrolling depending on the architecture and bounds
	// checks are removed by the compiler thanks to the constant size.
	case 1024 / _W:
		const  = 1024 / _W // compiler hint
		 := make([]uint, *2)
		var  uint
		for  := 0;  < ; ++ {
			 := []
			 := addMulVVW1024(&[], &[0], )
			 := [] * .m0inv
			 := addMulVVW1024(&[], &[0], )
			[+],  = bits.Add(, , )
		}
		copy(.reset().limbs, [:])
		.maybeSubtractModulus(choice(), )

	case 1536 / _W:
		const  = 1536 / _W // compiler hint
		 := make([]uint, *2)
		var  uint
		for  := 0;  < ; ++ {
			 := []
			 := addMulVVW1536(&[], &[0], )
			 := [] * .m0inv
			 := addMulVVW1536(&[], &[0], )
			[+],  = bits.Add(, , )
		}
		copy(.reset().limbs, [:])
		.maybeSubtractModulus(choice(), )

	case 2048 / _W:
		const  = 2048 / _W // compiler hint
		 := make([]uint, *2)
		var  uint
		for  := 0;  < ; ++ {
			 := []
			 := addMulVVW2048(&[], &[0], )
			 := [] * .m0inv
			 := addMulVVW2048(&[], &[0], )
			[+],  = bits.Add(, , )
		}
		copy(.reset().limbs, [:])
		.maybeSubtractModulus(choice(), )
	}

	return 
}

// addMulVVW multiplies the multi-word value x by the single-word value y,
// adding the result to the multi-word value z and returning the final carry.
// It can be thought of as one row of a pen-and-paper column multiplication.
//
//go:norace
func addMulVVW(,  []uint,  uint) ( uint) {
	_ = [len()-1] // bounds check elimination hint
	for  := range  {
		,  := bits.Mul([], )
		,  := bits.Add(, [], 0)
		// We use bits.Add with zero to get an add-with-carry instruction that
		// absorbs the carry from the previous bits.Add.
		, _ = bits.Add(, 0, )
		,  = bits.Add(, , 0)
		, _ = bits.Add(, 0, )
		 = 
		[] = 
	}
	return 
}

// Mul calculates x = x * y mod m.
//
// The length of both operands must be the same as the modulus. Both operands
// must already be reduced modulo m.
//
//go:norace
func ( *Nat) ( *Nat,  *Modulus) *Nat {
	if .odd {
		// A Montgomery multiplication by a value out of the Montgomery domain
		// takes the result out of Montgomery representation.
		 := NewNat().set().montgomeryRepresentation() // xR = x * R mod m
		return .montgomeryMul(, , )                  // x = xR * y / R mod m
	}

	 := len(.nat.limbs)
	 := .limbs[:]
	 := .limbs[:]

	switch  {
	default:
		// Attempt to use a stack-allocated backing array.
		 := make([]uint, 0, preallocLimbs*2)
		if cap() < *2 {
			 = make([]uint, 0, *2)
		}
		 = [:*2]

		// T = x * y
		for  := 0;  < ; ++ {
			[+] = addMulVVW([:+], , [])
		}

		// x = T mod m
		return .Mod(&Nat{limbs: }, )

	// The following specialized cases follow the exact same algorithm, but
	// optimized for the sizes most used in RSA. See montgomeryMul for details.
	case 1024 / _W:
		const  = 1024 / _W // compiler hint
		 := make([]uint, *2)
		for  := 0;  < ; ++ {
			[+] = addMulVVW1024(&[], &[0], [])
		}
		return .Mod(&Nat{limbs: }, )
	case 1536 / _W:
		const  = 1536 / _W // compiler hint
		 := make([]uint, *2)
		for  := 0;  < ; ++ {
			[+] = addMulVVW1536(&[], &[0], [])
		}
		return .Mod(&Nat{limbs: }, )
	case 2048 / _W:
		const  = 2048 / _W // compiler hint
		 := make([]uint, *2)
		for  := 0;  < ; ++ {
			[+] = addMulVVW2048(&[], &[0], [])
		}
		return .Mod(&Nat{limbs: }, )
	}
}

// Exp calculates out = x^e mod m.
//
// The exponent e is represented in big-endian order. The output will be resized
// to the size of m and overwritten. x must already be reduced modulo m.
//
// m must be odd, or Exp will panic.
//
//go:norace
func ( *Nat) ( *Nat,  []byte,  *Modulus) *Nat {
	if !.odd {
		panic("bigmod: modulus for Exp must be odd")
	}

	// We use a 4 bit window. For our RSA workload, 4 bit windows are faster
	// than 2 bit windows, but use an extra 12 nats worth of scratch space.
	// Using bit sizes that don't divide 8 are more complex to implement, but
	// are likely to be more efficient if necessary.

	 := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1)
		// newNat calls are unrolled so they are allocated on the stack.
		NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
		NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
		NewNat(), NewNat(), NewNat(), NewNat(), NewNat(),
	}
	[0].set().montgomeryRepresentation()
	for  := 1;  < len(); ++ {
		[].montgomeryMul([-1], [0], )
	}

	.resetFor()
	.limbs[0] = 1
	.montgomeryRepresentation()
	 := NewNat().ExpandFor()
	for ,  := range  {
		for ,  := range []int{4, 0} {
			// Square four times. Optimization note: this can be implemented
			// more efficiently than with generic Montgomery multiplication.
			.montgomeryMul(, , )
			.montgomeryMul(, , )
			.montgomeryMul(, , )
			.montgomeryMul(, , )

			// Select x^k in constant time from the table.
			 := uint(( >> ) & 0b1111)
			for  := range  {
				.assign(ctEq(, uint(+1)), [])
			}

			// Multiply by x^k, discarding the result if k = 0.
			.montgomeryMul(, , )
			.assign(not(ctEq(, 0)), )
		}
	}

	return .montgomeryReduction()
}

// ExpShortVarTime calculates out = x^e mod m.
//
// The output will be resized to the size of m and overwritten. x must already
// be reduced modulo m. This leaks the exponent through timing side-channels.
//
// m must be odd, or ExpShortVarTime will panic.
func ( *Nat) ( *Nat,  uint,  *Modulus) *Nat {
	if !.odd {
		panic("bigmod: modulus for ExpShortVarTime must be odd")
	}
	// For short exponents, precomputing a table and using a window like in Exp
	// doesn't pay off. Instead, we do a simple conditional square-and-multiply
	// chain, skipping the initial run of zeroes.
	 := NewNat().set().montgomeryRepresentation()
	.set()
	for  := bits.UintSize - bits.Len() + 1;  < bits.UintSize; ++ {
		.montgomeryMul(, , )
		if  := ( >> (bits.UintSize -  - 1)) & 1;  != 0 {
			.montgomeryMul(, , )
		}
	}
	return .montgomeryReduction()
}

// InverseVarTime calculates x = a⁻¹ mod m and returns (x, true) if a is
// invertible. Otherwise, InverseVarTime returns (x, false) and x is not
// modified.
//
// a must be reduced modulo m, but doesn't need to have the same size. The
// output will be resized to the size of m and overwritten.
//
//go:norace
func ( *Nat) ( *Nat,  *Modulus) (*Nat, bool) {
	// This is the extended binary GCD algorithm described in the Handbook of
	// Applied Cryptography, Algorithm 14.61, adapted by BoringSSL to bound
	// coefficients and avoid negative numbers. For more details and proof of
	// correctness, see https://github.com/mit-plv/fiat-crypto/pull/333/files.
	//
	// Following the proof linked in the PR above, the changes are:
	//
	// 1. Negate [B] and [C] so they are positive. The invariant now involves a
	//    subtraction.
	// 2. If step 2 (both [x] and [y] are even) runs, abort immediately. This
	//    algorithm only cares about [x] and [y] relatively prime.
	// 3. Subtract copies of [x] and [y] as needed in step 6 (both [u] and [v]
	//    are odd) so coefficients stay in bounds.
	// 4. Replace the [u >= v] check with [u > v]. This changes the end
	//    condition to [v = 0] rather than [u = 0]. This saves an extra
	//    subtraction due to which coefficients were negated.
	// 5. Rename x and y to a and n, to capture that one is a modulus.
	// 6. Rearrange steps 4 through 6 slightly. Merge the loops in steps 4 and
	//    5 into the main loop (step 7's goto), and move step 6 to the start of
	//    the loop iteration, ensuring each loop iteration halves at least one
	//    value.
	//
	// Note this algorithm does not handle either input being zero.

	if .IsZero() == yes {
		return , false
	}
	if .IsOdd() == no && !.odd {
		// a and m are not coprime, as they are both even.
		return , false
	}

	 := NewNat().set().ExpandFor()
	 := .Nat()

	 := NewNat().reset(len(.nat.limbs))
	.limbs[0] = 1
	 := NewNat().reset(len(.limbs))
	 := NewNat().reset(len(.nat.limbs))
	 := NewNat().reset(len(.limbs))
	.limbs[0] = 1

	// Before and after each loop iteration, the following hold:
	//
	//   u = A*a - B*m
	//   v = D*m - C*a
	//   0 < u <= a
	//   0 <= v <= m
	//   0 <= A < m
	//   0 <= B <= a
	//   0 <= C < m
	//   0 <= D <= a
	//
	// After each loop iteration, u and v only get smaller, and at least one of
	// them shrinks by at least a factor of two.
	for {
		// If both u and v are odd, subtract the smaller from the larger.
		// If u = v, we need to subtract from v to hit the modified exit condition.
		if .IsOdd() == yes && .IsOdd() == yes {
			if .cmpGeq() == no {
				.sub()
				.Add(, )
				.Add(, &Modulus{nat: })
			} else {
				.sub()
				.Add(, )
				.Add(, &Modulus{nat: })
			}
		}

		// Exactly one of u and v is now even.
		if .IsOdd() == .IsOdd() {
			panic("bigmod: internal error: u and v are not in the expected state")
		}

		// Halve the even one and adjust the corresponding coefficient.
		if .IsOdd() == no {
			rshift1(, 0)
			if .IsOdd() == yes || .IsOdd() == yes {
				rshift1(, .add(.nat))
				rshift1(, .add())
			} else {
				rshift1(, 0)
				rshift1(, 0)
			}
		} else { // v.IsOdd() == no
			rshift1(, 0)
			if .IsOdd() == yes || .IsOdd() == yes {
				rshift1(, .add(.nat))
				rshift1(, .add())
			} else {
				rshift1(, 0)
				rshift1(, 0)
			}
		}

		if .IsZero() == yes {
			if .IsOne() == no {
				return , false
			}
			return .set(), true
		}
	}
}

//go:norace
func rshift1( *Nat,  uint) {
	 := len(.limbs)
	 := .limbs[:]

	for  := range  {
		[] >>= 1
		if +1 <  {
			[] |= [+1] << (_W - 1)
		} else {
			[] |=  << (_W - 1)
		}
	}
}