// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package hmac implements HMAC according to [FIPS 198-1]. // // [FIPS 198-1]: https://doi.org/10.6028/NIST.FIPS.198-1
package hmac import ( ) // key is zero padded to the block size of the hash function // ipad = 0x36 byte repeated for key length // opad = 0x5c byte repeated for key length // hmac = H([key ^ opad] H([key ^ ipad] text)) // marshalable is the combination of encoding.BinaryMarshaler and // encoding.BinaryUnmarshaler. Their method definitions are repeated here to // avoid a dependency on the encoding package. type marshalable interface { MarshalBinary() ([]byte, error) UnmarshalBinary([]byte) error } type HMAC struct { opad, ipad []byte outer, inner fips140.Hash // If marshaled is true, then opad and ipad do not contain a padded // copy of the key, but rather the marshaled state of outer/inner after // opad/ipad has been fed into it. marshaled bool // forHKDF and keyLen are stored to inform the service indicator decision. forHKDF bool keyLen int } func ( *HMAC) ( []byte) []byte { // Per FIPS 140-3 IG C.M, key lengths below 112 bits are only allowed for // legacy use (i.e. verification only) and we don't support that. However, // HKDF uses the HMAC key for the salt, which is allowed to be shorter. if .keyLen < 112/8 && !.forHKDF { fips140.RecordNonApproved() } switch .inner.(type) { case *sha256.Digest, *sha512.Digest, *sha3.Digest: default: fips140.RecordNonApproved() } := len() = .inner.Sum() if .marshaled { if := .outer.(marshalable).UnmarshalBinary(.opad); != nil { panic() } } else { .outer.Reset() .outer.Write(.opad) } .outer.Write([:]) return .outer.Sum([:]) } func ( *HMAC) ( []byte) ( int, error) { return .inner.Write() } func ( *HMAC) () int { return .outer.Size() } func ( *HMAC) () int { return .inner.BlockSize() } func ( *HMAC) () { if .marshaled { if := .inner.(marshalable).UnmarshalBinary(.ipad); != nil { panic() } return } .inner.Reset() .inner.Write(.ipad) // If the underlying hash is marshalable, we can save some time by saving a // copy of the hash state now, and restoring it on future calls to Reset and // Sum instead of writing ipad/opad every time. // // We do this on Reset to avoid slowing down the common single-use case. // // This is allowed by FIPS 198-1, Section 6: "Conceptually, the intermediate // results of the compression function on the B-byte blocks (K0 ⊕ ipad) and // (K0 ⊕ opad) can be precomputed once, at the time of generation of the key // K, or before its first use. These intermediate results can be stored and // then used to initialize H each time that a message needs to be // authenticated using the same key. [...] These stored intermediate values // shall be treated and protected in the same manner as secret keys." , := .inner.(marshalable) if ! { return } , := .outer.(marshalable) if ! { return } , := .MarshalBinary() if != nil { return } .outer.Reset() .outer.Write(.opad) , := .MarshalBinary() if != nil { return } // Marshaling succeeded; save the marshaled state for later .ipad = .opad = .marshaled = true } // New returns a new HMAC hash using the given [fips140.Hash] type and key. func [ fips140.Hash]( func() , []byte) *HMAC { := &HMAC{keyLen: len()} .outer = () .inner = () := true func() { defer func() { // The comparison might panic if the underlying types are not comparable. _ = recover() }() if .outer == .inner { = false } }() if ! { panic("crypto/hmac: hash generation function does not produce unique values") } := .inner.BlockSize() .ipad = make([]byte, ) .opad = make([]byte, ) if len() > { // If key is too big, hash it. .outer.Write() = .outer.Sum(nil) } copy(.ipad, ) copy(.opad, ) for := range .ipad { .ipad[] ^= 0x36 } for := range .opad { .opad[] ^= 0x5c } .inner.Write(.ipad) return } // MarkAsUsedInKDF records that this HMAC instance is used as part of a KDF. func ( *HMAC) { .forHKDF = true }