// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package draw provides image composition functions. // // See "The Go image/draw package" for an introduction to this package: // https://golang.org/doc/articles/image_draw.html
package draw import ( ) // m is the maximum color value returned by image.Color.RGBA. const m = 1<<16 - 1 // Image is an image.Image with a Set method to change a single pixel. type Image interface { image.Image Set(x, y int, c color.Color) } // RGBA64Image extends both the [Image] and [image.RGBA64Image] interfaces with a // SetRGBA64 method to change a single pixel. SetRGBA64 is equivalent to // calling Set, but it can avoid allocations from converting concrete color // types to the [color.Color] interface type. type RGBA64Image interface { image.RGBA64Image Set(x, y int, c color.Color) SetRGBA64(x, y int, c color.RGBA64) } // Quantizer produces a palette for an image. type Quantizer interface { // Quantize appends up to cap(p) - len(p) colors to p and returns the // updated palette suitable for converting m to a paletted image. Quantize(p color.Palette, m image.Image) color.Palette } // Op is a Porter-Duff compositing operator. type Op int const ( // Over specifies ``(src in mask) over dst''. Over Op = iota // Src specifies ``src in mask''. Src ) // Draw implements the [Drawer] interface by calling the Draw function with this // [Op]. func ( Op) ( Image, image.Rectangle, image.Image, image.Point) { DrawMask(, , , , nil, image.Point{}, ) } // Drawer contains the [Draw] method. type Drawer interface { // Draw aligns r.Min in dst with sp in src and then replaces the // rectangle r in dst with the result of drawing src on dst. Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) } // FloydSteinberg is a [Drawer] that is the [Src] [Op] with Floyd-Steinberg error // diffusion. var FloydSteinberg Drawer = floydSteinberg{} type floydSteinberg struct{} func (floydSteinberg) ( Image, image.Rectangle, image.Image, image.Point) { clip(, &, , &, nil, nil) if .Empty() { return } drawPaletted(, , , , true) } // clip clips r against each image's bounds (after translating into the // destination image's coordinate space) and shifts the points sp and mp by // the same amount as the change in r.Min. func clip( Image, *image.Rectangle, image.Image, *image.Point, image.Image, *image.Point) { := .Min * = .Intersect(.Bounds()) * = .Intersect(.Bounds().Add(.Sub(*))) if != nil { * = .Intersect(.Bounds().Add(.Sub(*))) } := .Min.X - .X := .Min.Y - .Y if == 0 && == 0 { return } .X += .Y += if != nil { .X += .Y += } } func processBackward( image.Image, image.Rectangle, image.Image, image.Point) bool { return == && .Overlaps(.Add(.Sub(.Min))) && (.Y < .Min.Y || (.Y == .Min.Y && .X < .Min.X)) } // Draw calls [DrawMask] with a nil mask. func ( Image, image.Rectangle, image.Image, image.Point, Op) { DrawMask(, , , , nil, image.Point{}, ) } // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque. func ( Image, image.Rectangle, image.Image, image.Point, image.Image, image.Point, Op) { clip(, &, , &, , &) if .Empty() { return } // Fast paths for special cases. If none of them apply, then we fall back // to general but slower implementations. // // For NRGBA and NRGBA64 image types, the code paths aren't just faster. // They also avoid the information loss that would otherwise occur from // converting non-alpha-premultiplied color to and from alpha-premultiplied // color. See TestDrawSrcNonpremultiplied. switch dst0 := .(type) { case *image.RGBA: if == Over { if == nil { switch src0 := .(type) { case *image.Uniform: , , , := .RGBA() if == 0xffff { drawFillSrc(, , , , , ) } else { drawFillOver(, , , , , ) } return case *image.RGBA: drawCopyOver(, , , ) return case *image.NRGBA: drawNRGBAOver(, , , ) return case *image.YCbCr: // An image.YCbCr is always fully opaque, and so if the // mask is nil (i.e. fully opaque) then the op is // effectively always Src. Similarly for image.Gray and // image.CMYK. if imageutil.DrawYCbCr(, , , ) { return } case *image.Gray: drawGray(, , , ) return case *image.CMYK: drawCMYK(, , , ) return } } else if , := .(*image.Alpha); { switch src0 := .(type) { case *image.Uniform: drawGlyphOver(, , , , ) return case *image.RGBA: drawRGBAMaskOver(, , , , , ) return case *image.Gray: drawGrayMaskOver(, , , , , ) return // Case order matters. The next case (image.RGBA64Image) is an // interface type that the concrete types above also implement. case image.RGBA64Image: drawRGBA64ImageMaskOver(, , , , , ) return } } } else { if == nil { switch src0 := .(type) { case *image.Uniform: , , , := .RGBA() drawFillSrc(, , , , , ) return case *image.RGBA: := .PixOffset(.Min.X, .Min.Y) := .PixOffset(.X, .Y) drawCopySrc( .Pix[:], .Stride, , .Pix[:], .Stride, , 4*.Dx()) return case *image.NRGBA: drawNRGBASrc(, , , ) return case *image.YCbCr: if imageutil.DrawYCbCr(, , , ) { return } case *image.Gray: drawGray(, , , ) return case *image.CMYK: drawCMYK(, , , ) return } } } drawRGBA(, , , , , , ) return case *image.Paletted: if == Src && == nil { if , := .(*image.Uniform); { := uint8(.Palette.Index(.C)) := .PixOffset(.Min.X, .Min.Y) := + .Dx() for := ; < ; ++ { .Pix[] = } := .Pix[:] for := .Min.Y + 1; < .Max.Y; ++ { += .Stride += .Stride copy(.Pix[:], ) } return } else if !processBackward(, , , ) { drawPaletted(, , , , false) return } } case *image.NRGBA: if == Src && == nil { if , := .(*image.NRGBA); { := .PixOffset(.Min.X, .Min.Y) := .PixOffset(.X, .Y) drawCopySrc( .Pix[:], .Stride, , .Pix[:], .Stride, , 4*.Dx()) return } } case *image.NRGBA64: if == Src && == nil { if , := .(*image.NRGBA64); { := .PixOffset(.Min.X, .Min.Y) := .PixOffset(.X, .Y) drawCopySrc( .Pix[:], .Stride, , .Pix[:], .Stride, , 8*.Dx()) return } } } , , := .Min.X, .Max.X, 1 , , := .Min.Y, .Max.Y, 1 if processBackward(, , , ) { , , = -1, -1, -1 , , = -1, -1, -1 } // FALLBACK1.17 // // Try the draw.RGBA64Image and image.RGBA64Image interfaces, part of the // standard library since Go 1.17. These are like the draw.Image and // image.Image interfaces but they can avoid allocations from converting // concrete color types to the color.Color interface type. if , := .(RGBA64Image); != nil { if , := .(image.RGBA64Image); != nil { if == nil { := .Y + - .Min.Y := .Y + - .Min.Y for := ; != ; , , = +, +, + { := .X + - .Min.X := .X + - .Min.X for := ; != ; , , = +, +, + { if == Src { .SetRGBA64(, , .RGBA64At(, )) } else { := .RGBA64At(, ) := m - uint32(.A) := .RGBA64At(, ) .SetRGBA64(, , color.RGBA64{ R: uint16((uint32(.R)*)/m) + .R, G: uint16((uint32(.G)*)/m) + .G, B: uint16((uint32(.B)*)/m) + .B, A: uint16((uint32(.A)*)/m) + .A, }) } } } return } else if , := .(image.RGBA64Image); != nil { := .Y + - .Min.Y := .Y + - .Min.Y for := ; != ; , , = +, +, + { := .X + - .Min.X := .X + - .Min.X for := ; != ; , , = +, +, + { := uint32(.RGBA64At(, ).A) switch { case == 0: if == Over { // No-op. } else { .SetRGBA64(, , color.RGBA64{}) } case == m && == Src: .SetRGBA64(, , .RGBA64At(, )) default: := .RGBA64At(, ) if == Over { := .RGBA64At(, ) := m - (uint32(.A) * / m) .SetRGBA64(, , color.RGBA64{ R: uint16((uint32(.R)* + uint32(.R)*) / m), G: uint16((uint32(.G)* + uint32(.G)*) / m), B: uint16((uint32(.B)* + uint32(.B)*) / m), A: uint16((uint32(.A)* + uint32(.A)*) / m), }) } else { .SetRGBA64(, , color.RGBA64{ R: uint16(uint32(.R) * / m), G: uint16(uint32(.G) * / m), B: uint16(uint32(.B) * / m), A: uint16(uint32(.A) * / m), }) } } } } return } } } // FALLBACK1.0 // // If none of the faster code paths above apply, use the draw.Image and // image.Image interfaces, part of the standard library since Go 1.0. var color.RGBA64 := .Y + - .Min.Y := .Y + - .Min.Y for := ; != ; , , = +, +, + { := .X + - .Min.X := .X + - .Min.X for := ; != ; , , = +, +, + { := uint32(m) if != nil { _, _, _, = .At(, ).RGBA() } switch { case == 0: if == Over { // No-op. } else { .Set(, , color.Transparent) } case == m && == Src: .Set(, , .At(, )) default: , , , := .At(, ).RGBA() if == Over { , , , := .At(, ).RGBA() := m - ( * / m) .R = uint16((* + *) / m) .G = uint16((* + *) / m) .B = uint16((* + *) / m) .A = uint16((* + *) / m) } else { .R = uint16( * / m) .G = uint16( * / m) .B = uint16( * / m) .A = uint16( * / m) } // The third argument is &out instead of out (and out is // declared outside of the inner loop) to avoid the implicit // conversion to color.Color here allocating memory in the // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). .Set(, , &) } } } } func drawFillOver( *image.RGBA, image.Rectangle, , , , uint32) { // The 0x101 is here for the same reason as in drawRGBA. := (m - ) * 0x101 := .PixOffset(.Min.X, .Min.Y) := + .Dx()*4 for := .Min.Y; != .Max.Y; ++ { for := ; < ; += 4 { := &.Pix[+0] := &.Pix[+1] := &.Pix[+2] := &.Pix[+3] * = uint8((uint32(*)*/m + ) >> 8) * = uint8((uint32(*)*/m + ) >> 8) * = uint8((uint32(*)*/m + ) >> 8) * = uint8((uint32(*)*/m + ) >> 8) } += .Stride += .Stride } } func drawFillSrc( *image.RGBA, image.Rectangle, , , , uint32) { := uint8( >> 8) := uint8( >> 8) := uint8( >> 8) := uint8( >> 8) // The built-in copy function is faster than a straightforward for loop to fill the destination with // the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and // then use the first row as the slice source for the remaining rows. := .PixOffset(.Min.X, .Min.Y) := + .Dx()*4 for := ; < ; += 4 { .Pix[+0] = .Pix[+1] = .Pix[+2] = .Pix[+3] = } := .Pix[:] for := .Min.Y + 1; < .Max.Y; ++ { += .Stride += .Stride copy(.Pix[:], ) } } func drawCopyOver( *image.RGBA, image.Rectangle, *image.RGBA, image.Point) { , := .Dx(), .Dy() := .PixOffset(.Min.X, .Min.Y) := .PixOffset(.X, .Y) var ( , int , , int ) if .Min.Y < .Y || .Min.Y == .Y && .Min.X <= .X { = .Stride = .Stride , , = 0, *4, +4 } else { // If the source start point is higher than the destination start point, or equal height but to the left, // then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down. += ( - 1) * .Stride += ( - 1) * .Stride = -.Stride = -.Stride , , = (-1)*4, -4, -4 } for ; > 0; -- { := .Pix[:] := .Pix[:] for := ; != ; += { := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([0]) * 0x101 := uint32([1]) * 0x101 := uint32([2]) * 0x101 := uint32([3]) * 0x101 // The 0x101 is here for the same reason as in drawRGBA. := (m - ) * 0x101 := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 [0] = uint8((uint32([0])*/m + ) >> 8) [1] = uint8((uint32([1])*/m + ) >> 8) [2] = uint8((uint32([2])*/m + ) >> 8) [3] = uint8((uint32([3])*/m + ) >> 8) } += += } } // drawCopySrc copies bytes to dstPix from srcPix. These arguments roughly // correspond to the Pix fields of the image package's concrete image.Image // implementations, but are offset (dstPix is dst.Pix[dpOffset:] not dst.Pix). func drawCopySrc( []byte, int, image.Rectangle, []byte, int, image.Point, int) { , , , , := 0, 0, , , .Dy() if .Min.Y > .Y { // If the source start point is higher than the destination start // point, then we compose the rows in bottom-up order instead of // top-down. Unlike the drawCopyOver function, we don't have to check // the x coordinates because the built-in copy function can handle // overlapping slices. = ( - 1) * = ( - 1) * = - = - } for ; > 0; -- { copy([:+], [:+]) += += } } func drawNRGBAOver( *image.RGBA, image.Rectangle, *image.NRGBA, image.Point) { := (.Min.X - .Rect.Min.X) * 4 := (.Max.X - .Rect.Min.X) * 4 := (.X - .Rect.Min.X) * 4 := .Max.Y - .Rect.Min.Y := .Min.Y - .Rect.Min.Y := .Y - .Rect.Min.Y for ; != ; , = +1, +1 { := .Pix[*.Stride:] := .Pix[*.Stride:] for , := , ; < ; , = +4, +4 { // Convert from non-premultiplied color to pre-multiplied color. := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([3]) * 0x101 := uint32([0]) * / 0xff := uint32([1]) * / 0xff := uint32([2]) * / 0xff := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) // The 0x101 is here for the same reason as in drawRGBA. := (m - ) * 0x101 [0] = uint8((*/m + ) >> 8) [1] = uint8((*/m + ) >> 8) [2] = uint8((*/m + ) >> 8) [3] = uint8((*/m + ) >> 8) } } } func drawNRGBASrc( *image.RGBA, image.Rectangle, *image.NRGBA, image.Point) { := (.Min.X - .Rect.Min.X) * 4 := (.Max.X - .Rect.Min.X) * 4 := (.X - .Rect.Min.X) * 4 := .Max.Y - .Rect.Min.Y := .Min.Y - .Rect.Min.Y := .Y - .Rect.Min.Y for ; != ; , = +1, +1 { := .Pix[*.Stride:] := .Pix[*.Stride:] for , := , ; < ; , = +4, +4 { // Convert from non-premultiplied color to pre-multiplied color. := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([3]) * 0x101 := uint32([0]) * / 0xff := uint32([1]) * / 0xff := uint32([2]) * / 0xff := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 [0] = uint8( >> 8) [1] = uint8( >> 8) [2] = uint8( >> 8) [3] = uint8( >> 8) } } } func drawGray( *image.RGBA, image.Rectangle, *image.Gray, image.Point) { := (.Min.X - .Rect.Min.X) * 4 := (.Max.X - .Rect.Min.X) * 4 := (.X - .Rect.Min.X) * 1 := .Max.Y - .Rect.Min.Y := .Min.Y - .Rect.Min.Y := .Y - .Rect.Min.Y for ; != ; , = +1, +1 { := .Pix[*.Stride:] := .Pix[*.Stride:] for , := , ; < ; , = +4, +1 { := [] := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 [0] = [1] = [2] = [3] = 255 } } } func drawCMYK( *image.RGBA, image.Rectangle, *image.CMYK, image.Point) { := (.Min.X - .Rect.Min.X) * 4 := (.Max.X - .Rect.Min.X) * 4 := (.X - .Rect.Min.X) * 4 := .Max.Y - .Rect.Min.Y := .Min.Y - .Rect.Min.Y := .Y - .Rect.Min.Y for ; != ; , = +1, +1 { := .Pix[*.Stride:] := .Pix[*.Stride:] for , := , ; < ; , = +4, +4 { := [ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := [ : +4 : +4] [0], [1], [2] = color.CMYKToRGB([0], [1], [2], [3]) [3] = 255 } } } func drawGlyphOver( *image.RGBA, image.Rectangle, *image.Uniform, *image.Alpha, image.Point) { := .PixOffset(.Min.X, .Min.Y) := + .Dx()*4 := .PixOffset(.X, .Y) , , , := .RGBA() for , := .Min.Y, .Y; != .Max.Y; , = +1, +1 { for , := , ; < ; , = +4, +1 { := uint32(.Pix[]) if == 0 { continue } |= << 8 // The 0x101 is here for the same reason as in drawRGBA. := (m - ( * / m)) * 0x101 := .Pix[ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 [0] = uint8((uint32([0])* + *) / m >> 8) [1] = uint8((uint32([1])* + *) / m >> 8) [2] = uint8((uint32([2])* + *) / m >> 8) [3] = uint8((uint32([3])* + *) / m >> 8) } += .Stride += .Stride += .Stride } } func drawGrayMaskOver( *image.RGBA, image.Rectangle, *image.Gray, image.Point, *image.Alpha, image.Point) { , , := .Min.X, .Max.X, 1 , , := .Min.Y, .Max.Y, 1 if .Overlaps(.Add(.Sub(.Min))) { if .Y < .Min.Y || .Y == .Min.Y && .X < .Min.X { , , = -1, -1, -1 , , = -1, -1, -1 } } := .Y + - .Min.Y := .Y + - .Min.Y := .X + - .Min.X := .X + - .Min.X := + ( - ) := .PixOffset(, ) := * 4 for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := .PixOffset(, ) := uint32(.Pix[]) |= << 8 := .PixOffset(, ) := uint32(.Pix[]) |= << 8 := uint32(0xffff) := .Pix[ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. // We work in 16-bit color, and so would normally do: // dr |= dr << 8 // and similarly for dg, db and da, but instead we multiply a // (which is a 16-bit color, ranging in [0,65535]) by 0x101. // This yields the same result, but is fewer arithmetic operations. := (m - ( * / m)) * 0x101 [0] = uint8((* + *) / m >> 8) [1] = uint8((* + *) / m >> 8) [2] = uint8((* + *) / m >> 8) [3] = uint8((* + *) / m >> 8) } += * .Stride } } func drawRGBAMaskOver( *image.RGBA, image.Rectangle, *image.RGBA, image.Point, *image.Alpha, image.Point) { , , := .Min.X, .Max.X, 1 , , := .Min.Y, .Max.Y, 1 if == && .Overlaps(.Add(.Sub(.Min))) { if .Y < .Min.Y || .Y == .Min.Y && .X < .Min.X { , , = -1, -1, -1 , , = -1, -1, -1 } } := .Y + - .Min.Y := .Y + - .Min.Y := .X + - .Min.X := .X + - .Min.X := + ( - ) := .PixOffset(, ) := * 4 for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := .PixOffset(, ) := uint32(.Pix[]) |= << 8 := .PixOffset(, ) := uint32(.Pix[+0]) := uint32(.Pix[+1]) := uint32(.Pix[+2]) := uint32(.Pix[+3]) |= << 8 |= << 8 |= << 8 |= << 8 := .Pix[ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. // We work in 16-bit color, and so would normally do: // dr |= dr << 8 // and similarly for dg, db and da, but instead we multiply a // (which is a 16-bit color, ranging in [0,65535]) by 0x101. // This yields the same result, but is fewer arithmetic operations. := (m - ( * / m)) * 0x101 [0] = uint8((* + *) / m >> 8) [1] = uint8((* + *) / m >> 8) [2] = uint8((* + *) / m >> 8) [3] = uint8((* + *) / m >> 8) } += * .Stride } } func drawRGBA64ImageMaskOver( *image.RGBA, image.Rectangle, image.RGBA64Image, image.Point, *image.Alpha, image.Point) { , , := .Min.X, .Max.X, 1 , , := .Min.Y, .Max.Y, 1 if image.Image() == && .Overlaps(.Add(.Sub(.Min))) { if .Y < .Min.Y || .Y == .Min.Y && .X < .Min.X { , , = -1, -1, -1 , , = -1, -1, -1 } } := .Y + - .Min.Y := .Y + - .Min.Y := .X + - .Min.X := .X + - .Min.X := + ( - ) := .PixOffset(, ) := * 4 for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := .PixOffset(, ) := uint32(.Pix[]) |= << 8 := .RGBA64At(, ) := .Pix[ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. // We work in 16-bit color, and so would normally do: // dr |= dr << 8 // and similarly for dg, db and da, but instead we multiply a // (which is a 16-bit color, ranging in [0,65535]) by 0x101. // This yields the same result, but is fewer arithmetic operations. := (m - (uint32(.A) * / m)) * 0x101 [0] = uint8((* + uint32(.R)*) / m >> 8) [1] = uint8((* + uint32(.G)*) / m >> 8) [2] = uint8((* + uint32(.B)*) / m >> 8) [3] = uint8((* + uint32(.A)*) / m >> 8) } += * .Stride } } func drawRGBA( *image.RGBA, image.Rectangle, image.Image, image.Point, image.Image, image.Point, Op) { , , := .Min.X, .Max.X, 1 , , := .Min.Y, .Max.Y, 1 if image.Image() == && .Overlaps(.Add(.Sub(.Min))) { if .Y < .Min.Y || .Y == .Min.Y && .X < .Min.X { , , = -1, -1, -1 , , = -1, -1, -1 } } := .Y + - .Min.Y := .Y + - .Min.Y := .X + - .Min.X := .X + - .Min.X := + ( - ) := .PixOffset(, ) := * 4 // Try the image.RGBA64Image interface, part of the standard library since // Go 1.17. // // This optimization is similar to how FALLBACK1.17 optimizes FALLBACK1.0 // in DrawMask, except here the concrete type of dst is known to be // *image.RGBA. if , := .(image.RGBA64Image); != nil { if == nil { if == Over { for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := .RGBA64At(, ) := .Pix[ : +4 : +4] := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) := (m - uint32(.A)) * 0x101 [0] = uint8((*/m + uint32(.R)) >> 8) [1] = uint8((*/m + uint32(.G)) >> 8) [2] = uint8((*/m + uint32(.B)) >> 8) [3] = uint8((*/m + uint32(.A)) >> 8) } += * .Stride } } else { for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := .RGBA64At(, ) := .Pix[ : +4 : +4] [0] = uint8(.R >> 8) [1] = uint8(.G >> 8) [2] = uint8(.B >> 8) [3] = uint8(.A >> 8) } += * .Stride } } return } else if , := .(image.RGBA64Image); != nil { if == Over { for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := uint32(.RGBA64At(, ).A) := .RGBA64At(, ) := .Pix[ : +4 : +4] := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) := (m - (uint32(.A) * / m)) * 0x101 [0] = uint8((* + uint32(.R)*) / m >> 8) [1] = uint8((* + uint32(.G)*) / m >> 8) [2] = uint8((* + uint32(.B)*) / m >> 8) [3] = uint8((* + uint32(.A)*) / m >> 8) } += * .Stride } } else { for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := uint32(.RGBA64At(, ).A) := .RGBA64At(, ) := .Pix[ : +4 : +4] [0] = uint8(uint32(.R) * / m >> 8) [1] = uint8(uint32(.G) * / m >> 8) [2] = uint8(uint32(.B) * / m >> 8) [3] = uint8(uint32(.A) * / m >> 8) } += * .Stride } } return } } // Use the image.Image interface, part of the standard library since Go // 1.0. // // This is similar to FALLBACK1.0 in DrawMask, except here the concrete // type of dst is known to be *image.RGBA. for := ; != ; , , = +, +, + { for , , := , , ; != ; , , = +, +, + { := uint32(m) if != nil { _, _, _, = .At(, ).RGBA() } , , , := .At(, ).RGBA() := .Pix[ : +4 : +4] // Small cap improves performance, see https://golang.org/issue/27857 if == Over { := uint32([0]) := uint32([1]) := uint32([2]) := uint32([3]) // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. // We work in 16-bit color, and so would normally do: // dr |= dr << 8 // and similarly for dg, db and da, but instead we multiply a // (which is a 16-bit color, ranging in [0,65535]) by 0x101. // This yields the same result, but is fewer arithmetic operations. := (m - ( * / m)) * 0x101 [0] = uint8((* + *) / m >> 8) [1] = uint8((* + *) / m >> 8) [2] = uint8((* + *) / m >> 8) [3] = uint8((* + *) / m >> 8) } else { [0] = uint8( * / m >> 8) [1] = uint8( * / m >> 8) [2] = uint8( * / m >> 8) [3] = uint8( * / m >> 8) } } += * .Stride } } // clamp clamps i to the interval [0, 0xffff]. func clamp( int32) int32 { if < 0 { return 0 } if > 0xffff { return 0xffff } return } // sqDiff returns the squared-difference of x and y, shifted by 2 so that // adding four of those won't overflow a uint32. // // x and y are both assumed to be in the range [0, 0xffff]. func sqDiff(, int32) uint32 { // This is an optimized code relying on the overflow/wrap around // properties of unsigned integers operations guaranteed by the language // spec. See sqDiff from the image/color package for more details. := uint32( - ) return ( * ) >> 2 } func drawPaletted( Image, image.Rectangle, image.Image, image.Point, bool) { // TODO(nigeltao): handle the case where the dst and src overlap. // Does it even make sense to try and do Floyd-Steinberg whilst // walking the image backward (right-to-left bottom-to-top)? // If dst is an *image.Paletted, we have a fast path for dst.Set and // dst.At. The dst.Set equivalent is a batch version of the algorithm // used by color.Palette's Index method in image/color/color.go, plus // optional Floyd-Steinberg error diffusion. , , := [][4]int32(nil), []byte(nil), 0 if , := .(*image.Paletted); { = make([][4]int32, len(.Palette)) for , := range .Palette { , , , := .RGBA() [][0] = int32() [][1] = int32() [][2] = int32() [][3] = int32() } , = .Pix[.PixOffset(.Min.X, .Min.Y):], .Stride } // quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization // errors that have been propagated to the pixels in the current and next // rows. The +2 simplifies calculation near the edges. var , [][4]int32 if { = make([][4]int32, .Dx()+2) = make([][4]int32, .Dx()+2) } := func(, int) (, , , uint32) { return .At(, ).RGBA() } // Fast paths for special cases to avoid excessive use of the color.Color // interface which escapes to the heap but need to be discovered for // each pixel on r. See also https://golang.org/issues/15759. switch src0 := .(type) { case *image.RGBA: = func(, int) (, , , uint32) { return .RGBAAt(, ).RGBA() } case *image.NRGBA: = func(, int) (, , , uint32) { return .NRGBAAt(, ).RGBA() } case *image.YCbCr: = func(, int) (, , , uint32) { return .YCbCrAt(, ).RGBA() } } // Loop over each source pixel. := color.RGBA64{A: 0xffff} for := 0; != .Dy(); ++ { for := 0; != .Dx(); ++ { // er, eg and eb are the pixel's R,G,B values plus the // optional Floyd-Steinberg error. , , , := (.X+, .Y+) , , , := int32(), int32(), int32(), int32() if { = clamp( + [+1][0]/16) = clamp( + [+1][1]/16) = clamp( + [+1][2]/16) = clamp( + [+1][3]/16) } if != nil { // Find the closest palette color in Euclidean R,G,B,A space: // the one that minimizes sum-squared-difference. // TODO(nigeltao): consider smarter algorithms. , := 0, uint32(1<<32-1) for , := range { := sqDiff(, [0]) + sqDiff(, [1]) + sqDiff(, [2]) + sqDiff(, [3]) if < { , = , if == 0 { break } } } [*+] = byte() if ! { continue } -= [][0] -= [][1] -= [][2] -= [][3] } else { .R = uint16() .G = uint16() .B = uint16() .A = uint16() // The third argument is &out instead of out (and out is // declared outside of the inner loop) to avoid the implicit // conversion to color.Color here allocating memory in the // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). .Set(.Min.X+, .Min.Y+, &) if ! { continue } , , , = .At(.Min.X+, .Min.Y+).RGBA() -= int32() -= int32() -= int32() -= int32() } // Propagate the Floyd-Steinberg quantization error. [+0][0] += * 3 [+0][1] += * 3 [+0][2] += * 3 [+0][3] += * 3 [+1][0] += * 5 [+1][1] += * 5 [+1][2] += * 5 [+1][3] += * 5 [+2][0] += * 1 [+2][1] += * 1 [+2][2] += * 1 [+2][3] += * 1 [+2][0] += * 7 [+2][1] += * 7 [+2][2] += * 7 [+2][3] += * 7 } // Recycle the quantization error buffers. if { , = , for := range { [] = [4]int32{} } } } }