Source File
table.go
Belonging Package
internal/runtime/maps
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package maps implements Go's builtin map type.
package maps
import (
)
// Maximum size of a table before it is split at the directory level.
//
// TODO: Completely made up value. This should be tuned for performance vs grow
// latency.
// TODO: This should likely be based on byte size, as copying costs will
// dominate grow latency for large objects.
const maxTableCapacity = 1024
// Ensure the max capacity fits in uint16, used for capacity and growthLeft
// below.
var _ = uint16(maxTableCapacity)
// table is a Swiss table hash table structure.
//
// Each table is a complete hash table implementation.
//
// Map uses one or more tables to store entries. Extendible hashing (hash
// prefix) is used to select the table to use for a specific key. Using
// multiple tables enables incremental growth by growing only one table at a
// time.
type table struct {
// The number of filled slots (i.e. the number of elements in the table).
used uint16
// The total number of slots (always 2^N). Equal to
// `(groups.lengthMask+1)*abi.SwissMapGroupSlots`.
capacity uint16
// The number of slots we can still fill without needing to rehash.
//
// We rehash when used + tombstones > loadFactor*capacity, including
// tombstones so the table doesn't overfill with tombstones. This field
// counts down remaining empty slots before the next rehash.
growthLeft uint16
// The number of bits used by directory lookups above this table. Note
// that this may be less then globalDepth, if the directory has grown
// but this table has not yet been split.
localDepth uint8
// Index of this table in the Map directory. This is the index of the
// _first_ location in the directory. The table may occur in multiple
// sequential indicies.
//
// index is -1 if the table is stale (no longer installed in the
// directory).
index int
// groups is an array of slot groups. Each group holds abi.SwissMapGroupSlots
// key/elem slots and their control bytes. A table has a fixed size
// groups array. The table is replaced (in rehash) when more space is
// required.
//
// TODO(prattmic): keys and elements are interleaved to maximize
// locality, but it comes at the expense of wasted space for some types
// (consider uint8 key, uint64 element). Consider placing all keys
// together in these cases to save space.
groups groupsReference
}
func newTable( *abi.SwissMapType, uint64, int, uint8) *table {
if < abi.SwissMapGroupSlots {
= abi.SwissMapGroupSlots
}
:= &table{
index: ,
localDepth: ,
}
if > maxTableCapacity {
panic("initial table capacity too large")
}
// N.B. group count must be a power of two for probeSeq to visit every
// group.
, := alignUpPow2()
if {
panic("rounded-up capacity overflows uint64")
}
.reset(, uint16())
return
}
// reset resets the table with new, empty groups with the specified new total
// capacity.
func ( *table) ( *abi.SwissMapType, uint16) {
:= uint64() / abi.SwissMapGroupSlots
.groups = newGroups(, )
.capacity =
.resetGrowthLeft()
for := uint64(0); <= .groups.lengthMask; ++ {
:= .groups.group(, )
.ctrls().setEmpty()
}
}
// Preconditions: table must be empty.
func ( *table) () {
var uint16
if .capacity == 0 {
// No real reason to support zero capacity table, since an
// empty Map simply won't have a table.
panic("table must have positive capacity")
} else if .capacity <= abi.SwissMapGroupSlots {
// If the map fits in a single group then we're able to fill all of
// the slots except 1 (an empty slot is needed to terminate find
// operations).
//
// TODO(go.dev/issue/54766): With a special case in probing for
// single-group tables, we could fill all slots.
= .capacity - 1
} else {
if .capacity*maxAvgGroupLoad < .capacity {
// TODO(prattmic): Do something cleaner.
panic("overflow")
}
= (.capacity * maxAvgGroupLoad) / abi.SwissMapGroupSlots
}
.growthLeft =
}
func ( *table) () uint64 {
return uint64(.used)
}
// Get performs a lookup of the key that key points to. It returns a pointer to
// the element, or false if the key doesn't exist.
func ( *table) ( *abi.SwissMapType, *Map, unsafe.Pointer) (unsafe.Pointer, bool) {
// TODO(prattmic): We could avoid hashing in a variety of special
// cases.
//
// - One entry maps could just directly compare the single entry
// without hashing.
// - String keys could do quick checks of a few bytes before hashing.
:= .Hasher(, .seed)
, , := .getWithKey(, , )
return ,
}
// getWithKey performs a lookup of key, returning a pointer to the version of
// the key in the map in addition to the element.
//
// This is relevant when multiple different key values compare equal (e.g.,
// +0.0 and -0.0). When a grow occurs during iteration, iteration perform a
// lookup of keys from the old group in the new group in order to correctly
// expose updated elements. For NeedsKeyUpdate keys, iteration also must return
// the new key value, not the old key value.
// hash must be the hash of the key.
func ( *table) ( *abi.SwissMapType, uintptr, unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer, bool) {
// To find the location of a key in the table, we compute hash(key). From
// h1(hash(key)) and the capacity, we construct a probeSeq that visits
// every group of slots in some interesting order. See [probeSeq].
//
// We walk through these indices. At each index, we select the entire
// group starting with that index and extract potential candidates:
// occupied slots with a control byte equal to h2(hash(key)). The key
// at candidate slot i is compared with key; if key == g.slot(i).key
// we are done and return the slot; if there is an empty slot in the
// group, we stop and return an error; otherwise we continue to the
// next probe index. Tombstones (ctrlDeleted) effectively behave like
// full slots that never match the value we're looking for.
//
// The h2 bits ensure when we compare a key we are likely to have
// actually found the object. That is, the chance is low that keys
// compare false. Thus, when we search for an object, we are unlikely
// to call Equal many times. This likelihood can be analyzed as follows
// (assuming that h2 is a random enough hash function).
//
// Let's assume that there are k "wrong" objects that must be examined
// in a probe sequence. For example, when doing a find on an object
// that is in the table, k is the number of objects between the start
// of the probe sequence and the final found object (not including the
// final found object). The expected number of objects with an h2 match
// is then k/128. Measurements and analysis indicate that even at high
// load factors, k is less than 32, meaning that the number of false
// positive comparisons we must perform is less than 1/8 per find.
:= makeProbeSeq(h1(), .groups.lengthMask)
for ; ; = .next() {
:= .groups.group(, .offset)
:= .ctrls().matchH2(h2())
for != 0 {
:= .first()
:= .key(, )
if .IndirectKey() {
= *((*unsafe.Pointer)())
}
if .Key.Equal(, ) {
:= .elem(, )
if .IndirectElem() {
= *((*unsafe.Pointer)())
}
return , , true
}
= .removeFirst()
}
= .ctrls().matchEmpty()
if != 0 {
// Finding an empty slot means we've reached the end of
// the probe sequence.
return nil, nil, false
}
}
}
func ( *table) ( *abi.SwissMapType, uintptr, unsafe.Pointer) (unsafe.Pointer, bool) {
:= makeProbeSeq(h1(), .groups.lengthMask)
for ; ; = .next() {
:= .groups.group(, .offset)
:= .ctrls().matchH2(h2())
for != 0 {
:= .first()
:= .key(, )
if .IndirectKey() {
= *((*unsafe.Pointer)())
}
if .Key.Equal(, ) {
:= .elem(, )
if .IndirectElem() {
= *((*unsafe.Pointer)())
}
return , true
}
= .removeFirst()
}
= .ctrls().matchEmpty()
if != 0 {
// Finding an empty slot means we've reached the end of
// the probe sequence.
return nil, false
}
}
}
// PutSlot returns a pointer to the element slot where an inserted element
// should be written, and ok if it returned a valid slot.
//
// PutSlot returns ok false if the table was split and the Map needs to find
// the new table.
//
// hash must be the hash of key.
func ( *table) ( *abi.SwissMapType, *Map, uintptr, unsafe.Pointer) (unsafe.Pointer, bool) {
:= makeProbeSeq(h1(), .groups.lengthMask)
// As we look for a match, keep track of the first deleted slot we
// find, which we'll use to insert the new entry if necessary.
var groupReference
var uintptr
for ; ; = .next() {
:= .groups.group(, .offset)
:= .ctrls().matchH2(h2())
// Look for an existing slot containing this key.
for != 0 {
:= .first()
:= .key(, )
if .IndirectKey() {
= *((*unsafe.Pointer)())
}
if .Key.Equal(, ) {
if .NeedKeyUpdate() {
typedmemmove(.Key, , )
}
:= .elem(, )
if .IndirectElem() {
= *((*unsafe.Pointer)())
}
.checkInvariants(, )
return , true
}
= .removeFirst()
}
// No existing slot for this key in this group. Is this the end
// of the probe sequence?
= .ctrls().matchEmptyOrDeleted()
if == 0 {
continue // nothing but filled slots. Keep probing.
}
:= .first()
if .ctrls().get() == ctrlDeleted {
// There are some deleted slots. Remember
// the first one, and keep probing.
if .data == nil {
=
=
}
continue
}
// We've found an empty slot, which means we've reached the end of
// the probe sequence.
// If we found a deleted slot along the way, we can
// replace it without consuming growthLeft.
if .data != nil {
=
=
.growthLeft++ // will be decremented below to become a no-op.
}
// If there is room left to grow, just insert the new entry.
if .growthLeft > 0 {
:= .key(, )
if .IndirectKey() {
:= newobject(.Key)
*(*unsafe.Pointer)() =
=
}
typedmemmove(.Key, , )
:= .elem(, )
if .IndirectElem() {
:= newobject(.Elem)
*(*unsafe.Pointer)() =
=
}
.ctrls().set(, ctrl(h2()))
.growthLeft--
.used++
.used++
.checkInvariants(, )
return , true
}
.rehash(, )
return nil, false
}
}
// uncheckedPutSlot inserts an entry known not to be in the table.
// This is used for grow/split where we are making a new table from
// entries in an existing table.
//
// Decrements growthLeft and increments used.
//
// Requires that the entry does not exist in the table, and that the table has
// room for another element without rehashing.
//
// Requires that there are no deleted entries in the table.
//
// For indirect keys and/or elements, the key and elem pointers can be
// put directly into the map, they do not need to be copied. This
// requires the caller to ensure that the referenced memory never
// changes (by sourcing those pointers from another indirect key/elem
// map).
func ( *table) ( *abi.SwissMapType, uintptr, , unsafe.Pointer) {
if .growthLeft == 0 {
panic("invariant failed: growthLeft is unexpectedly 0")
}
// Given key and its hash hash(key), to insert it, we construct a
// probeSeq, and use it to find the first group with an unoccupied (empty
// or deleted) slot. We place the key/value into the first such slot in
// the group and mark it as full with key's H2.
:= makeProbeSeq(h1(), .groups.lengthMask)
for ; ; = .next() {
:= .groups.group(, .offset)
:= .ctrls().matchEmptyOrDeleted()
if != 0 {
:= .first()
:= .key(, )
if .IndirectKey() {
*(*unsafe.Pointer)() =
} else {
typedmemmove(.Key, , )
}
:= .elem(, )
if .IndirectElem() {
*(*unsafe.Pointer)() =
} else {
typedmemmove(.Elem, , )
}
.growthLeft--
.used++
.ctrls().set(, ctrl(h2()))
return
}
}
}
func ( *table) ( *abi.SwissMapType, *Map, uintptr, unsafe.Pointer) {
:= makeProbeSeq(h1(), .groups.lengthMask)
for ; ; = .next() {
:= .groups.group(, .offset)
:= .ctrls().matchH2(h2())
for != 0 {
:= .first()
:= .key(, )
:=
if .IndirectKey() {
= *((*unsafe.Pointer)())
}
if .Key.Equal(, ) {
.used--
.used--
if .IndirectKey() {
// Clearing the pointer is sufficient.
*(*unsafe.Pointer)() = nil
} else if .Key.Pointers() {
// Only bothing clear the key if there
// are pointers in it.
typedmemclr(.Key, )
}
:= .elem(, )
if .IndirectElem() {
// Clearing the pointer is sufficient.
*(*unsafe.Pointer)() = nil
} else {
// Unlike keys, always clear the elem (even if
// it contains no pointers), as compound
// assignment operations depend on cleared
// deleted values. See
// https://go.dev/issue/25936.
typedmemclr(.Elem, )
}
// Only a full group can appear in the middle
// of a probe sequence (a group with at least
// one empty slot terminates probing). Once a
// group becomes full, it stays full until
// rehashing/resizing. So if the group isn't
// full now, we can simply remove the element.
// Otherwise, we create a tombstone to mark the
// slot as deleted.
if .ctrls().matchEmpty() != 0 {
.ctrls().set(, ctrlEmpty)
.growthLeft++
} else {
.ctrls().set(, ctrlDeleted)
}
.checkInvariants(, )
return
}
= .removeFirst()
}
= .ctrls().matchEmpty()
if != 0 {
// Finding an empty slot means we've reached the end of
// the probe sequence.
return
}
}
}
// tombstones returns the number of deleted (tombstone) entries in the table. A
// tombstone is a slot that has been deleted but is still considered occupied
// so as not to violate the probing invariant.
func ( *table) () uint16 {
return (.capacity*maxAvgGroupLoad)/abi.SwissMapGroupSlots - .used - .growthLeft
}
// Clear deletes all entries from the map resulting in an empty map.
func ( *table) ( *abi.SwissMapType) {
for := uint64(0); <= .groups.lengthMask; ++ {
:= .groups.group(, )
typedmemclr(.Group, .data)
.ctrls().setEmpty()
}
.used = 0
.resetGrowthLeft()
}
type Iter struct {
key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/compile/internal/walk/range.go).
elem unsafe.Pointer // Must be in second position (see cmd/compile/internal/walk/range.go).
typ *abi.SwissMapType
m *Map
// Randomize iteration order by starting iteration at a random slot
// offset. The offset into the directory uses a separate offset, as it
// must adjust when the directory grows.
entryOffset uint64
dirOffset uint64
// Snapshot of Map.clearSeq at iteration initialization time. Used to
// detect clear during iteration.
clearSeq uint64
// Value of Map.globalDepth during the last call to Next. Used to
// detect directory grow during iteration.
globalDepth uint8
// dirIdx is the current directory index, prior to adjustment by
// dirOffset.
dirIdx int
// tab is the table at dirIdx during the previous call to Next.
tab *table
// group is the group at entryIdx during the previous call to Next.
group groupReference
// entryIdx is the current entry index, prior to adjustment by entryOffset.
// The lower 3 bits of the index are the slot index, and the upper bits
// are the group index.
entryIdx uint64
}
// Init initializes Iter for iteration.
func ( *Iter) ( *abi.SwissMapType, *Map) {
.typ =
if == nil || .used == 0 {
return
}
:= 0
var groupReference
if .dirLen <= 0 {
// Use dirIdx == -1 as sentinel for small maps.
= -1
.data = .dirPtr
}
.m =
.entryOffset = rand()
.dirOffset = rand()
.globalDepth = .globalDepth
.dirIdx =
.group =
.clearSeq = .clearSeq
}
func ( *Iter) () bool {
return .typ != nil
}
// Map returns the map this iterator is iterating over.
func ( *Iter) () *Map {
return .m
}
// Key returns a pointer to the current key. nil indicates end of iteration.
//
// Must not be called prior to Next.
func ( *Iter) () unsafe.Pointer {
return .key
}
// Key returns a pointer to the current element. nil indicates end of
// iteration.
//
// Must not be called prior to Next.
func ( *Iter) () unsafe.Pointer {
return .elem
}
func ( *Iter) () {
// Skip other entries in the directory that refer to the same
// logical table. There are two cases of this:
//
// Consider this directory:
//
// - 0: *t1
// - 1: *t1
// - 2: *t2a
// - 3: *t2b
//
// At some point, the directory grew to accommodate a split of
// t2. t1 did not split, so entries 0 and 1 both point to t1.
// t2 did split, so the two halves were installed in entries 2
// and 3.
//
// If dirIdx is 0 and it.tab is t1, then we should skip past
// entry 1 to avoid repeating t1.
//
// If dirIdx is 2 and it.tab is t2 (pre-split), then we should
// skip past entry 3 because our pre-split t2 already covers
// all keys from t2a and t2b (except for new insertions, which
// iteration need not return).
//
// We can achieve both of these by using to difference between
// the directory and table depth to compute how many entries
// the table covers.
:= 1 << (.m.globalDepth - .tab.localDepth)
.dirIdx +=
.tab = nil
.group = groupReference{}
.entryIdx = 0
}
// Return the appropriate key/elem for key at slotIdx index within it.group, if
// any.
func ( *Iter) ( unsafe.Pointer, uintptr) (unsafe.Pointer, unsafe.Pointer, bool) {
, , := .m.getWithKey(.typ, )
if ! {
// Key has likely been deleted, and
// should be skipped.
//
// One exception is keys that don't
// compare equal to themselves (e.g.,
// NaN). These keys cannot be looked
// up, so getWithKey will fail even if
// the key exists.
//
// However, we are in luck because such
// keys cannot be updated and they
// cannot be deleted except with clear.
// Thus if no clear has occurred, the
// key/elem must still exist exactly as
// in the old groups, so we can return
// them from there.
//
// TODO(prattmic): Consider checking
// clearSeq early. If a clear occurred,
// Next could always return
// immediately, as iteration doesn't
// need to return anything added after
// clear.
if .clearSeq == .m.clearSeq && !.typ.Key.Equal(, ) {
:= .group.elem(.typ, )
if .typ.IndirectElem() {
= *((*unsafe.Pointer)())
}
return , , true
}
// This entry doesn't exist anymore.
return nil, nil, false
}
return , , true
}
// Next proceeds to the next element in iteration, which can be accessed via
// the Key and Elem methods.
//
// The table can be mutated during iteration, though there is no guarantee that
// the mutations will be visible to the iteration.
//
// Init must be called prior to Next.
func ( *Iter) () {
if .m == nil {
// Map was empty at Iter.Init.
.key = nil
.elem = nil
return
}
if .m.writing != 0 {
fatal("concurrent map iteration and map write")
return
}
if .dirIdx < 0 {
// Map was small at Init.
for ; .entryIdx < abi.SwissMapGroupSlots; .entryIdx++ {
:= uintptr(.entryIdx+.entryOffset) % abi.SwissMapGroupSlots
if (.group.ctrls().get() & ctrlEmpty) == ctrlEmpty {
// Empty or deleted.
continue
}
:= .group.key(.typ, )
if .typ.IndirectKey() {
= *((*unsafe.Pointer)())
}
// As below, if we have grown to a full map since Init,
// we continue to use the old group to decide the keys
// to return, but must look them up again in the new
// tables.
:= .m.dirLen > 0
var unsafe.Pointer
if {
var bool
, , := .m.getWithKey(.typ, )
if ! {
// See comment below.
if .clearSeq == .m.clearSeq && !.typ.Key.Equal(, ) {
= .group.elem(.typ, )
if .typ.IndirectElem() {
= *((*unsafe.Pointer)())
}
} else {
continue
}
} else {
=
=
}
} else {
= .group.elem(.typ, )
if .typ.IndirectElem() {
= *((*unsafe.Pointer)())
}
}
.entryIdx++
.key =
.elem =
return
}
.key = nil
.elem = nil
return
}
if .globalDepth != .m.globalDepth {
// Directory has grown since the last call to Next. Adjust our
// directory index.
//
// Consider:
//
// Before:
// - 0: *t1
// - 1: *t2 <- dirIdx
//
// After:
// - 0: *t1a (split)
// - 1: *t1b (split)
// - 2: *t2 <- dirIdx
// - 3: *t2
//
// That is, we want to double the current index when the
// directory size doubles (or quadruple when the directory size
// quadruples, etc).
//
// The actual (randomized) dirIdx is computed below as:
//
// dirIdx := (it.dirIdx + it.dirOffset) % it.m.dirLen
//
// Multiplication is associative across modulo operations,
// A * (B % C) = (A * B) % (A * C),
// provided that A is positive.
//
// Thus we can achieve this by adjusting it.dirIdx,
// it.dirOffset, and it.m.dirLen individually.
:= .m.globalDepth - .globalDepth
.dirIdx <<=
.dirOffset <<=
// it.m.dirLen was already adjusted when the directory grew.
.globalDepth = .m.globalDepth
}
// Continue iteration until we find a full slot.
for ; .dirIdx < .m.dirLen; .nextDirIdx() {
// Resolve the table.
if .tab == nil {
:= int((uint64(.dirIdx) + .dirOffset) & uint64(.m.dirLen-1))
:= .m.directoryAt(uintptr())
if .index != {
// Normally we skip past all duplicates of the
// same entry in the table (see updates to
// it.dirIdx at the end of the loop below), so
// this case wouldn't occur.
//
// But on the very first call, we have a
// completely randomized dirIdx that may refer
// to a middle of a run of tables in the
// directory. Do a one-time adjustment of the
// offset to ensure we start at first index for
// newTable.
:= - .index
.dirOffset -= uint64()
= .index
}
.tab =
}
// N.B. Use it.tab, not newTab. It is important to use the old
// table for key selection if the table has grown. See comment
// on grown below.
:= uint64(.tab.capacity) - 1
if .entryIdx > {
// Continue to next table.
continue
}
// Fast path: skip matching and directly check if entryIdx is a
// full slot.
//
// In the slow path below, we perform an 8-slot match check to
// look for full slots within the group.
//
// However, with a max load factor of 7/8, each slot in a
// mostly full map has a high probability of being full. Thus
// it is cheaper to check a single slot than do a full control
// match.
:= (.entryIdx + .entryOffset) &
:= uintptr( & (abi.SwissMapGroupSlots - 1))
if == 0 || .group.data == nil {
// Only compute the group (a) when we switch
// groups (slotIdx rolls over) and (b) on the
// first iteration in this table (slotIdx may
// not be zero due to entryOffset).
:= >> abi.SwissMapGroupSlotsBits
.group = .tab.groups.group(.typ, )
}
if (.group.ctrls().get() & ctrlEmpty) == 0 {
// Slot full.
:= .group.key(.typ, )
if .typ.IndirectKey() {
= *((*unsafe.Pointer)())
}
:= .tab.index == -1
var unsafe.Pointer
if {
, , := .grownKeyElem(, )
if ! {
// This entry doesn't exist
// anymore. Continue to the
// next one.
goto
} else {
=
=
}
} else {
= .group.elem(.typ, )
if .typ.IndirectElem() {
= *((*unsafe.Pointer)())
}
}
.entryIdx++
.key =
.elem =
return
}
:
.entryIdx++
// Slow path: use a match on the control word to jump ahead to
// the next full slot.
//
// This is highly effective for maps with particularly low load
// (e.g., map allocated with large hint but few insertions).
//
// For maps with medium load (e.g., 3-4 empty slots per group)
// it also tends to work pretty well. Since slots within a
// group are filled in order, then if there have been no
// deletions, a match will allow skipping past all empty slots
// at once.
//
// Note: it is tempting to cache the group match result in the
// iterator to use across Next calls. However because entries
// may be deleted between calls later calls would still need to
// double-check the control value.
var bitset
for .entryIdx <= {
:= (.entryIdx + .entryOffset) &
:= uintptr( & (abi.SwissMapGroupSlots - 1))
if == 0 || .group.data == nil {
// Only compute the group (a) when we switch
// groups (slotIdx rolls over) and (b) on the
// first iteration in this table (slotIdx may
// not be zero due to entryOffset).
:= >> abi.SwissMapGroupSlotsBits
.group = .tab.groups.group(.typ, )
}
if == 0 {
= .group.ctrls().matchFull()
if != 0 {
// Starting in the middle of the group.
// Ignore earlier groups.
= .removeBelow()
}
// Skip over groups that are composed of only empty or
// deleted slots.
if == 0 {
// Jump past remaining slots in this
// group.
.entryIdx += abi.SwissMapGroupSlots - uint64()
continue
}
:= .first()
.entryIdx += uint64( - )
if .entryIdx > {
// Past the end of this table's iteration.
continue
}
+= uint64( - )
=
}
:= .group.key(.typ, )
if .typ.IndirectKey() {
= *((*unsafe.Pointer)())
}
// If the table has changed since the last
// call, then it has grown or split. In this
// case, further mutations (changes to
// key->elem or deletions) will not be visible
// in our snapshot table. Instead we must
// consult the new table by doing a full
// lookup.
//
// We still use our old table to decide which
// keys to lookup in order to avoid returning
// the same key twice.
:= .tab.index == -1
var unsafe.Pointer
if {
, , := .grownKeyElem(, )
if ! {
// This entry doesn't exist anymore.
// Continue to the next one.
= .removeFirst()
if == 0 {
// No more entries in this
// group. Continue to next
// group.
.entryIdx += abi.SwissMapGroupSlots - uint64()
continue
}
// Next full slot.
:= .first()
.entryIdx += uint64( - )
continue
} else {
=
=
}
} else {
= .group.elem(.typ, )
if .typ.IndirectElem() {
= *((*unsafe.Pointer)())
}
}
// Jump ahead to the next full slot or next group.
= .removeFirst()
if == 0 {
// No more entries in
// this group. Continue
// to next group.
.entryIdx += abi.SwissMapGroupSlots - uint64()
} else {
// Next full slot.
:= .first()
.entryIdx += uint64( - )
}
.key =
.elem =
return
}
// Continue to next table.
}
.key = nil
.elem = nil
return
}
// Replaces the table with one larger table or two split tables to fit more
// entries. Since the table is replaced, t is now stale and should not be
// modified.
func ( *table) ( *abi.SwissMapType, *Map) {
// TODO(prattmic): SwissTables typically perform a "rehash in place"
// operation which recovers capacity consumed by tombstones without growing
// the table by reordering slots as necessary to maintain the probe
// invariant while eliminating all tombstones.
//
// However, it is unclear how to make rehash in place work with
// iteration. Since iteration simply walks through all slots in order
// (with random start offset), reordering the slots would break
// iteration.
//
// As an alternative, we could do a "resize" to new groups allocation
// of the same size. This would eliminate the tombstones, but using a
// new allocation, so the existing grow support in iteration would
// continue to work.
:= 2 * .capacity
if <= maxTableCapacity {
.grow(, , )
return
}
.split(, )
}
// Bitmask for the last selection bit at this depth.
func localDepthMask( uint8) uintptr {
if goarch.PtrSize == 4 {
return uintptr(1) << (32 - )
}
return uintptr(1) << (64 - )
}
// split the table into two, installing the new tables in the map directory.
func ( *table) ( *abi.SwissMapType, *Map) {
:= .localDepth
++
// TODO: is this the best capacity?
:= newTable(, maxTableCapacity, -1, )
:= newTable(, maxTableCapacity, -1, )
// Split in half at the localDepth bit from the top.
:= localDepthMask()
for := uint64(0); <= .groups.lengthMask; ++ {
:= .groups.group(, )
for := uintptr(0); < abi.SwissMapGroupSlots; ++ {
if (.ctrls().get() & ctrlEmpty) == ctrlEmpty {
// Empty or deleted
continue
}
:= .key(, )
if .IndirectKey() {
= *((*unsafe.Pointer)())
}
:= .elem(, )
if .IndirectElem() {
= *((*unsafe.Pointer)())
}
:= .Hasher(, .seed)
var *table
if & == 0 {
=
} else {
=
}
.uncheckedPutSlot(, , , )
}
}
.installTableSplit(, , )
.index = -1
}
// grow the capacity of the table by allocating a new table with a bigger array
// and uncheckedPutting each element of the table into the new table (we know
// that no insertion here will Put an already-present value), and discard the
// old table.
func ( *table) ( *abi.SwissMapType, *Map, uint16) {
:= newTable(, uint64(), .index, .localDepth)
if .capacity > 0 {
for := uint64(0); <= .groups.lengthMask; ++ {
:= .groups.group(, )
for := uintptr(0); < abi.SwissMapGroupSlots; ++ {
if (.ctrls().get() & ctrlEmpty) == ctrlEmpty {
// Empty or deleted
continue
}
:= .key(, )
if .IndirectKey() {
= *((*unsafe.Pointer)())
}
:= .elem(, )
if .IndirectElem() {
= *((*unsafe.Pointer)())
}
:= .Hasher(, .seed)
.uncheckedPutSlot(, , , )
}
}
}
.checkInvariants(, )
.replaceTable()
.index = -1
}
// probeSeq maintains the state for a probe sequence that iterates through the
// groups in a table. The sequence is a triangular progression of the form
//
// p(i) := (i^2 + i)/2 + hash (mod mask+1)
//
// The sequence effectively outputs the indexes of *groups*. The group
// machinery allows us to check an entire group with minimal branching.
//
// It turns out that this probe sequence visits every group exactly once if
// the number of groups is a power of two, since (i^2+i)/2 is a bijection in
// Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
type probeSeq struct {
mask uint64
offset uint64
index uint64
}
func makeProbeSeq( uintptr, uint64) probeSeq {
return probeSeq{
mask: ,
offset: uint64() & ,
index: 0,
}
}
func ( probeSeq) () probeSeq {
.index++
.offset = (.offset + .index) & .mask
return
}
The pages are generated with Golds v0.7.3-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |