Source File
arith.go
Belonging Package
math/big
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file provides Go implementations of elementary multi-precision
// arithmetic operations on word vectors. These have the suffix _g.
// These are needed for platforms without assembly implementations of these routines.
// This file also contains elementary operations that can be implemented
// sufficiently efficiently in Go.
package big
import
// A Word represents a single digit of a multi-precision unsigned integer.
type Word uint
const (
_S = _W / 8 // word size in bytes
_W = bits.UintSize // word size in bits
_B = 1 << _W // digit base
_M = _B - 1 // digit mask
)
// Many of the loops in this file are of the form
// for i := 0; i < len(z) && i < len(x) && i < len(y); i++
// i < len(z) is the real condition.
// However, checking i < len(x) && i < len(y) as well is faster than
// having the compiler do a bounds check in the body of the loop;
// remarkably it is even faster than hoisting the bounds check
// out of the loop, by doing something like
// _, _ = x[len(z)-1], y[len(z)-1]
// There are other ways to hoist the bounds check out of the loop,
// but the compiler's BCE isn't powerful enough for them (yet?).
// See the discussion in CL 164966.
// ----------------------------------------------------------------------------
// Elementary operations on words
//
// These operations are used by the vector operations below.
// z1<<_W + z0 = x*y
func mulWW(, Word) (, Word) {
, := bits.Mul(uint(), uint())
return Word(), Word()
}
// z1<<_W + z0 = x*y + c
func mulAddWWW_g(, , Word) (, Word) {
, := bits.Mul(uint(), uint())
var uint
, = bits.Add(, uint(), 0)
return Word( + ), Word()
}
// nlz returns the number of leading zeros in x.
// Wraps bits.LeadingZeros call for convenience.
func nlz( Word) uint {
return uint(bits.LeadingZeros(uint()))
}
// The resulting carry c is either 0 or 1.
func addVV_g(, , []Word) ( Word) {
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len() && < len(); ++ {
, := bits.Add(uint([]), uint([]), uint())
[] = Word()
= Word()
}
return
}
// The resulting carry c is either 0 or 1.
func subVV_g(, , []Word) ( Word) {
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len() && < len(); ++ {
, := bits.Sub(uint([]), uint([]), uint())
[] = Word()
= Word()
}
return
}
// The resulting carry c is either 0 or 1.
func addVW_g(, []Word, Word) ( Word) {
=
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len(); ++ {
, := bits.Add(uint([]), uint(), 0)
[] = Word()
= Word()
}
return
}
// addVWlarge is addVW, but intended for large z.
// The only difference is that we check on every iteration
// whether we are done with carries,
// and if so, switch to a much faster copy instead.
// This is only a good idea for large z,
// because the overhead of the check and the function call
// outweigh the benefits when z is small.
func addVWlarge(, []Word, Word) ( Word) {
=
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len(); ++ {
if == 0 {
copy([:], [:])
return
}
, := bits.Add(uint([]), uint(), 0)
[] = Word()
= Word()
}
return
}
func subVW_g(, []Word, Word) ( Word) {
=
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len(); ++ {
, := bits.Sub(uint([]), uint(), 0)
[] = Word()
= Word()
}
return
}
// subVWlarge is to subVW as addVWlarge is to addVW.
func subVWlarge(, []Word, Word) ( Word) {
=
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len(); ++ {
if == 0 {
copy([:], [:])
return
}
, := bits.Sub(uint([]), uint(), 0)
[] = Word()
= Word()
}
return
}
func shlVU_g(, []Word, uint) ( Word) {
if == 0 {
copy(, )
return
}
if len() == 0 {
return
}
&= _W - 1 // hint to the compiler that shifts by s don't need guard code
:= _W -
&= _W - 1 // ditto
= [len()-1] >>
for := len() - 1; > 0; -- {
[] = []<< | [-1]>>
}
[0] = [0] <<
return
}
func shrVU_g(, []Word, uint) ( Word) {
if == 0 {
copy(, )
return
}
if len() == 0 {
return
}
if len() != len() {
// This is an invariant guaranteed by the caller.
panic("len(x) != len(z)")
}
&= _W - 1 // hint to the compiler that shifts by s don't need guard code
:= _W -
&= _W - 1 // ditto
= [0] <<
for := 1; < len(); ++ {
[-1] = [-1]>> | []<<
}
[len()-1] = [len()-1] >>
return
}
func mulAddVWW_g(, []Word, , Word) ( Word) {
=
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len(); ++ {
, [] = mulAddWWW_g([], , )
}
return
}
func addMulVVW_g(, []Word, Word) ( Word) {
// The comment near the top of this file discusses this for loop condition.
for := 0; < len() && < len(); ++ {
, := mulAddWWW_g([], , [])
, := bits.Add(uint(), uint(), 0)
, [] = Word(), Word()
+=
}
return
}
// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.
// An approximate reciprocal with a reference to "Improved Division by Invariant Integers
// (IEEE Transactions on Computers, 11 Jun. 2010)"
func divWW(, , , Word) (, Word) {
:= nlz()
if != 0 {
= << | >>(_W-)
<<=
<<=
}
:= uint()
// We know that
// m = ⎣(B^2-1)/d⎦-B
// ⎣(B^2-1)/d⎦ = m+B
// (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d
// B^2/d = m+B+delta2 0 <= delta2 <= 1
// The quotient we're trying to compute is
// quotient = ⎣(x1*B+x0)/d⎦
// = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦
// = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦
// = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦
// The latter two terms of this three-term sum are between 0 and 1.
// So we can compute just the first term, and we will be low by at most 2.
, := bits.Mul(uint(), uint())
, := bits.Add(, uint(), 0)
, _ = bits.Add(, uint(), )
// The quotient is either t1, t1+1, or t1+2.
// We'll try t1 and adjust if needed.
:=
// compute remainder r=x-d*q.
, := bits.Mul(, )
, := bits.Sub(uint(), , 0)
, := bits.Sub(uint(), , )
// The remainder we just computed is bounded above by B+d:
// r = x1*B + x0 - d*q.
// = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦
// = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1
// = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1
// = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha
// = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha
// = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha
// < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1
// = B - d + d + d
// = B+d
// So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.
// Add 1 to q and subtract d from r. That guarantees that r is <B, so
// we no longer need to keep track of r1.
if != 0 {
++
-=
}
// If the remainder is still too large, increment q one more time.
if >= {
++
-=
}
return Word(), Word( >> )
}
// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
func reciprocalWord( Word) Word {
:= uint( << nlz())
:= ^
:= uint(_M)
, := bits.Div(, , ) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U
return Word()
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |