Source File
gamma.go
Belonging Package
math
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
// The go code is a simplified version of the original C.
//
// tgamma.c
//
// Gamma function
//
// SYNOPSIS:
//
// double x, y, tgamma();
// extern int signgam;
//
// y = tgamma( x );
//
// DESCRIPTION:
//
// Returns gamma function of the argument. The result is
// correctly signed, and the sign (+1 or -1) is also
// returned in a global (extern) variable named signgam.
// This variable is also filled in by the logarithmic gamma
// function lgamma().
//
// Arguments |x| <= 34 are reduced by recurrence and the function
// approximated by a rational function of degree 6/7 in the
// interval (2,3). Large arguments are handled by Stirling's
// formula. Large negative arguments are made positive using
// a reflection formula.
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -34, 34 10000 1.3e-16 2.5e-17
// IEEE -170,-33 20000 2.3e-15 3.3e-16
// IEEE -33, 33 20000 9.4e-16 2.2e-16
// IEEE 33, 171.6 20000 2.3e-15 3.2e-16
//
// Error for arguments outside the test range will be larger
// owing to error amplification by the exponential function.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
var _gamP = [...]float64{
1.60119522476751861407e-04,
1.19135147006586384913e-03,
1.04213797561761569935e-02,
4.76367800457137231464e-02,
2.07448227648435975150e-01,
4.94214826801497100753e-01,
9.99999999999999996796e-01,
}
var _gamQ = [...]float64{
-2.31581873324120129819e-05,
5.39605580493303397842e-04,
-4.45641913851797240494e-03,
1.18139785222060435552e-02,
3.58236398605498653373e-02,
-2.34591795718243348568e-01,
7.14304917030273074085e-02,
1.00000000000000000320e+00,
}
var _gamS = [...]float64{
7.87311395793093628397e-04,
-2.29549961613378126380e-04,
-2.68132617805781232825e-03,
3.47222221605458667310e-03,
8.33333333333482257126e-02,
}
// Gamma function computed by Stirling's formula.
// The pair of results must be multiplied together to get the actual answer.
// The multiplication is left to the caller so that, if careful, the caller can avoid
// infinity for 172 <= x <= 180.
// The polynomial is valid for 33 <= x <= 172; larger values are only used
// in reciprocal and produce denormalized floats. The lower precision there
// masks any imprecision in the polynomial.
func stirling( float64) (float64, float64) {
if > 200 {
return Inf(1), 1
}
const (
= 2.506628274631000502417
= 143.01608
)
:= 1 /
= 1 + *((((_gamS[0]*+_gamS[1])*+_gamS[2])*+_gamS[3])*+_gamS[4])
:= Exp()
:= 1.0
if > { // avoid Pow() overflow
:= Pow(, 0.5*-0.25)
, = , /
} else {
= Pow(, -0.5) /
}
return , * *
}
// Gamma returns the Gamma function of x.
//
// Special cases are:
//
// Gamma(+Inf) = +Inf
// Gamma(+0) = +Inf
// Gamma(-0) = -Inf
// Gamma(x) = NaN for integer x < 0
// Gamma(-Inf) = NaN
// Gamma(NaN) = NaN
func ( float64) float64 {
const = 0.57721566490153286060651209008240243104215933593992 // A001620
// special cases
switch {
case isNegInt() || IsInf(, -1) || IsNaN():
return NaN()
case IsInf(, 1):
return Inf(1)
case == 0:
if Signbit() {
return Inf(-1)
}
return Inf(1)
}
:= Abs()
:= Floor()
if > 33 {
if >= 0 {
, := stirling()
return *
}
// Note: x is negative but (checked above) not a negative integer,
// so x must be small enough to be in range for conversion to int64.
// If |x| were >= 2⁶³ it would have to be an integer.
:= 1
if := int64(); &1 == 0 {
= -1
}
:= -
if > 0.5 {
= + 1
= -
}
= * Sin(Pi*)
if == 0 {
return Inf()
}
, := stirling()
:= Abs()
:= * *
if IsInf(, 0) {
= Pi / / /
} else {
= Pi /
}
return float64() *
}
// Reduce argument
:= 1.0
for >= 3 {
= - 1
= *
}
for < 0 {
if > -1e-09 {
goto
}
= /
= + 1
}
for < 2 {
if < 1e-09 {
goto
}
= /
= + 1
}
if == 2 {
return
}
= - 2
= (((((*_gamP[0]+_gamP[1])*+_gamP[2])*+_gamP[3])*+_gamP[4])*+_gamP[5])* + _gamP[6]
= ((((((*_gamQ[0]+_gamQ[1])*+_gamQ[2])*+_gamQ[3])*+_gamQ[4])*+_gamQ[5])*+_gamQ[6])* + _gamQ[7]
return * /
:
if == 0 {
return Inf(1)
}
return / ((1 + *) * )
}
func isNegInt( float64) bool {
if < 0 {
, := Modf()
return == 0
}
return false
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |