package math

Import Path
	math (on golang.org and go.dev)

Dependency Relation
	imports 3 packages, and imported by 27 packages


Code Examples package main import ( "fmt" "math" ) func main() { x := math.Abs(-2) fmt.Printf("%.1f\n", x) y := math.Abs(2) fmt.Printf("%.1f\n", y) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Acos(1)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Acosh(1)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Asin(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Asinh(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Atan(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Atan2(0, 0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Atanh(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Cbrt(8)) fmt.Printf("%.2f\n", math.Cbrt(27)) } package main import ( "fmt" "math" ) func main() { c := math.Ceil(1.49) fmt.Printf("%.1f", c) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Copysign(3.2, -1)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Cos(math.Pi/2)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Cosh(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Dim(4, -2)) fmt.Printf("%.2f\n", math.Dim(-4, 2)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Exp(1)) fmt.Printf("%.2f\n", math.Exp(2)) fmt.Printf("%.2f\n", math.Exp(-1)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Exp2(1)) fmt.Printf("%.2f\n", math.Exp2(-3)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.6f\n", math.Expm1(0.01)) fmt.Printf("%.6f\n", math.Expm1(-1)) } package main import ( "fmt" "math" ) func main() { c := math.Floor(1.51) fmt.Printf("%.1f", c) } package main import ( "fmt" "math" ) func main() { x := math.Log(1) fmt.Printf("%.1f\n", x) y := math.Log(2.7183) fmt.Printf("%.1f\n", y) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.1f", math.Log10(100)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.1f", math.Log2(256)) } package main import ( "fmt" "math" ) func main() { c := math.Mod(7, 4) fmt.Printf("%.1f", c) } package main import ( "fmt" "math" ) func main() { int, frac := math.Modf(3.14) fmt.Printf("%.2f, %.2f\n", int, frac) int, frac = math.Modf(-2.71) fmt.Printf("%.2f, %.2f\n", int, frac) } package main import ( "fmt" "math" ) func main() { c := math.Pow(2, 3) fmt.Printf("%.1f", c) } package main import ( "fmt" "math" ) func main() { c := math.Pow10(2) fmt.Printf("%.1f", c) } package main import ( "fmt" "math" ) func main() { p := math.Round(10.5) fmt.Printf("%.1f\n", p) n := math.Round(-10.5) fmt.Printf("%.1f\n", n) } package main import ( "fmt" "math" ) func main() { u := math.RoundToEven(11.5) fmt.Printf("%.1f\n", u) d := math.RoundToEven(12.5) fmt.Printf("%.1f\n", d) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Sin(math.Pi)) } package main import ( "fmt" "math" ) func main() { sin, cos := math.Sincos(0) fmt.Printf("%.2f, %.2f", sin, cos) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Sinh(0)) } package main import ( "fmt" "math" ) func main() { const ( a = 3 b = 4 ) c := math.Sqrt(a*a + b*b) fmt.Printf("%.1f", c) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Tan(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Tanh(0)) } package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Trunc(math.Pi)) fmt.Printf("%.2f\n", math.Trunc(-1.2345)) }
Package-Level Functions (total 67)
Abs returns the absolute value of x. Special cases are: Abs(±Inf) = +Inf Abs(NaN) = NaN
Acos returns the arccosine, in radians, of x. Special case is: Acos(x) = NaN if x < -1 or x > 1
Acosh returns the inverse hyperbolic cosine of x. Special cases are: Acosh(+Inf) = +Inf Acosh(x) = NaN if x < 1 Acosh(NaN) = NaN
Asin returns the arcsine, in radians, of x. Special cases are: Asin(±0) = ±0 Asin(x) = NaN if x < -1 or x > 1
Asinh returns the inverse hyperbolic sine of x. Special cases are: Asinh(±0) = ±0 Asinh(±Inf) = ±Inf Asinh(NaN) = NaN
Atan returns the arctangent, in radians, of x. Special cases are: Atan(±0) = ±0 Atan(±Inf) = ±Pi/2
Atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value. Special cases are (in order): Atan2(y, NaN) = NaN Atan2(NaN, x) = NaN Atan2(+0, x>=0) = +0 Atan2(-0, x>=0) = -0 Atan2(+0, x<=-0) = +Pi Atan2(-0, x<=-0) = -Pi Atan2(y>0, 0) = +Pi/2 Atan2(y<0, 0) = -Pi/2 Atan2(+Inf, +Inf) = +Pi/4 Atan2(-Inf, +Inf) = -Pi/4 Atan2(+Inf, -Inf) = 3Pi/4 Atan2(-Inf, -Inf) = -3Pi/4 Atan2(y, +Inf) = 0 Atan2(y>0, -Inf) = +Pi Atan2(y<0, -Inf) = -Pi Atan2(+Inf, x) = +Pi/2 Atan2(-Inf, x) = -Pi/2
Atanh returns the inverse hyperbolic tangent of x. Special cases are: Atanh(1) = +Inf Atanh(±0) = ±0 Atanh(-1) = -Inf Atanh(x) = NaN if x < -1 or x > 1 Atanh(NaN) = NaN
Cbrt returns the cube root of x. Special cases are: Cbrt(±0) = ±0 Cbrt(±Inf) = ±Inf Cbrt(NaN) = NaN
Ceil returns the least integer value greater than or equal to x. Special cases are: Ceil(±0) = ±0 Ceil(±Inf) = ±Inf Ceil(NaN) = NaN
Copysign returns a value with the magnitude of x and the sign of y.
Cos returns the cosine of the radian argument x. Special cases are: Cos(±Inf) = NaN Cos(NaN) = NaN
Cosh returns the hyperbolic cosine of x. Special cases are: Cosh(±0) = 1 Cosh(±Inf) = +Inf Cosh(NaN) = NaN
Dim returns the maximum of x-y or 0. Special cases are: Dim(+Inf, +Inf) = NaN Dim(-Inf, -Inf) = NaN Dim(x, NaN) = Dim(NaN, x) = NaN
Erf returns the error function of x. Special cases are: Erf(+Inf) = 1 Erf(-Inf) = -1 Erf(NaN) = NaN
Erfc returns the complementary error function of x. Special cases are: Erfc(+Inf) = 0 Erfc(-Inf) = 2 Erfc(NaN) = NaN
Erfcinv returns the inverse of Erfc(x). Special cases are: Erfcinv(0) = +Inf Erfcinv(2) = -Inf Erfcinv(x) = NaN if x < 0 or x > 2 Erfcinv(NaN) = NaN
Erfinv returns the inverse error function of x. Special cases are: Erfinv(1) = +Inf Erfinv(-1) = -Inf Erfinv(x) = NaN if x < -1 or x > 1 Erfinv(NaN) = NaN
Exp returns e**x, the base-e exponential of x. Special cases are: Exp(+Inf) = +Inf Exp(NaN) = NaN Very large values overflow to 0 or +Inf. Very small values underflow to 1.
Exp2 returns 2**x, the base-2 exponential of x. Special cases are the same as Exp.
Expm1 returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero. Special cases are: Expm1(+Inf) = +Inf Expm1(-Inf) = -1 Expm1(NaN) = NaN Very large values overflow to -1 or +Inf.
Float32bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position. Float32bits(Float32frombits(x)) == x.
Float32frombits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. Float32frombits(Float32bits(x)) == x.
Float64bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position, and Float64bits(Float64frombits(x)) == x.
Float64frombits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. Float64frombits(Float64bits(x)) == x.
Floor returns the greatest integer value less than or equal to x. Special cases are: Floor(±0) = ±0 Floor(±Inf) = ±Inf Floor(NaN) = NaN
FMA returns x * y + z, computed with only one rounding. (That is, FMA returns the fused multiply-add of x, y, and z.)
Frexp breaks f into a normalized fraction and an integral power of two. It returns frac and exp satisfying f == frac × 2**exp, with the absolute value of frac in the interval [½, 1). Special cases are: Frexp(±0) = ±0, 0 Frexp(±Inf) = ±Inf, 0 Frexp(NaN) = NaN, 0
Gamma returns the Gamma function of x. Special cases are: Gamma(+Inf) = +Inf Gamma(+0) = +Inf Gamma(-0) = -Inf Gamma(x) = NaN for integer x < 0 Gamma(-Inf) = NaN Gamma(NaN) = NaN
Hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow. Special cases are: Hypot(±Inf, q) = +Inf Hypot(p, ±Inf) = +Inf Hypot(NaN, q) = NaN Hypot(p, NaN) = NaN
Ilogb returns the binary exponent of x as an integer. Special cases are: Ilogb(±Inf) = MaxInt32 Ilogb(0) = MinInt32 Ilogb(NaN) = MaxInt32
Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
IsInf reports whether f is an infinity, according to sign. If sign > 0, IsInf reports whether f is positive infinity. If sign < 0, IsInf reports whether f is negative infinity. If sign == 0, IsInf reports whether f is either infinity.
IsNaN reports whether f is an IEEE 754 ``not-a-number'' value.
J0 returns the order-zero Bessel function of the first kind. Special cases are: J0(±Inf) = 0 J0(0) = 1 J0(NaN) = NaN
J1 returns the order-one Bessel function of the first kind. Special cases are: J1(±Inf) = 0 J1(NaN) = NaN
Jn returns the order-n Bessel function of the first kind. Special cases are: Jn(n, ±Inf) = 0 Jn(n, NaN) = NaN
Ldexp is the inverse of Frexp. It returns frac × 2**exp. Special cases are: Ldexp(±0, exp) = ±0 Ldexp(±Inf, exp) = ±Inf Ldexp(NaN, exp) = NaN
Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). Special cases are: Lgamma(+Inf) = +Inf Lgamma(0) = +Inf Lgamma(-integer) = +Inf Lgamma(-Inf) = -Inf Lgamma(NaN) = NaN
Log returns the natural logarithm of x. Special cases are: Log(+Inf) = +Inf Log(0) = -Inf Log(x < 0) = NaN Log(NaN) = NaN
Log10 returns the decimal logarithm of x. The special cases are the same as for Log.
Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero. Special cases are: Log1p(+Inf) = +Inf Log1p(±0) = ±0 Log1p(-1) = -Inf Log1p(x < -1) = NaN Log1p(NaN) = NaN
Log2 returns the binary logarithm of x. The special cases are the same as for Log.
Logb returns the binary exponent of x. Special cases are: Logb(±Inf) = +Inf Logb(0) = -Inf Logb(NaN) = NaN
Max returns the larger of x or y. Special cases are: Max(x, +Inf) = Max(+Inf, x) = +Inf Max(x, NaN) = Max(NaN, x) = NaN Max(+0, ±0) = Max(±0, +0) = +0 Max(-0, -0) = -0
Min returns the smaller of x or y. Special cases are: Min(x, -Inf) = Min(-Inf, x) = -Inf Min(x, NaN) = Min(NaN, x) = NaN Min(-0, ±0) = Min(±0, -0) = -0
Mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x. Special cases are: Mod(±Inf, y) = NaN Mod(NaN, y) = NaN Mod(x, 0) = NaN Mod(x, ±Inf) = x Mod(x, NaN) = NaN
Modf returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f. Special cases are: Modf(±Inf) = ±Inf, NaN Modf(NaN) = NaN, NaN
NaN returns an IEEE 754 ``not-a-number'' value.
Nextafter returns the next representable float64 value after x towards y. Special cases are: Nextafter(x, x) = x Nextafter(NaN, y) = NaN Nextafter(x, NaN) = NaN
Nextafter32 returns the next representable float32 value after x towards y. Special cases are: Nextafter32(x, x) = x Nextafter32(NaN, y) = NaN Nextafter32(x, NaN) = NaN
Pow returns x**y, the base-x exponential of y. Special cases are (in order): Pow(x, ±0) = 1 for any x Pow(1, y) = 1 for any y Pow(x, 1) = x for any x Pow(NaN, y) = NaN Pow(x, NaN) = NaN Pow(±0, y) = ±Inf for y an odd integer < 0 Pow(±0, -Inf) = +Inf Pow(±0, +Inf) = +0 Pow(±0, y) = +Inf for finite y < 0 and not an odd integer Pow(±0, y) = ±0 for y an odd integer > 0 Pow(±0, y) = +0 for finite y > 0 and not an odd integer Pow(-1, ±Inf) = 1 Pow(x, +Inf) = +Inf for |x| > 1 Pow(x, -Inf) = +0 for |x| > 1 Pow(x, +Inf) = +0 for |x| < 1 Pow(x, -Inf) = +Inf for |x| < 1 Pow(+Inf, y) = +Inf for y > 0 Pow(+Inf, y) = +0 for y < 0 Pow(-Inf, y) = Pow(-0, -y) Pow(x, y) = NaN for finite x < 0 and finite non-integer y
Pow10 returns 10**n, the base-10 exponential of n. Special cases are: Pow10(n) = 0 for n < -323 Pow10(n) = +Inf for n > 308
Remainder returns the IEEE 754 floating-point remainder of x/y. Special cases are: Remainder(±Inf, y) = NaN Remainder(NaN, y) = NaN Remainder(x, 0) = NaN Remainder(x, ±Inf) = x Remainder(x, NaN) = NaN
Round returns the nearest integer, rounding half away from zero. Special cases are: Round(±0) = ±0 Round(±Inf) = ±Inf Round(NaN) = NaN
RoundToEven returns the nearest integer, rounding ties to even. Special cases are: RoundToEven(±0) = ±0 RoundToEven(±Inf) = ±Inf RoundToEven(NaN) = NaN
Signbit reports whether x is negative or negative zero.
Sin returns the sine of the radian argument x. Special cases are: Sin(±0) = ±0 Sin(±Inf) = NaN Sin(NaN) = NaN
Sincos returns Sin(x), Cos(x). Special cases are: Sincos(±0) = ±0, 1 Sincos(±Inf) = NaN, NaN Sincos(NaN) = NaN, NaN
Sinh returns the hyperbolic sine of x. Special cases are: Sinh(±0) = ±0 Sinh(±Inf) = ±Inf Sinh(NaN) = NaN
Sqrt returns the square root of x. Special cases are: Sqrt(+Inf) = +Inf Sqrt(±0) = ±0 Sqrt(x < 0) = NaN Sqrt(NaN) = NaN
Tan returns the tangent of the radian argument x. Special cases are: Tan(±0) = ±0 Tan(±Inf) = NaN Tan(NaN) = NaN
Tanh returns the hyperbolic tangent of x. Special cases are: Tanh(±0) = ±0 Tanh(±Inf) = ±1 Tanh(NaN) = NaN
Trunc returns the integer value of x. Special cases are: Trunc(±0) = ±0 Trunc(±Inf) = ±Inf Trunc(NaN) = NaN
Y0 returns the order-zero Bessel function of the second kind. Special cases are: Y0(+Inf) = 0 Y0(0) = -Inf Y0(x < 0) = NaN Y0(NaN) = NaN
Y1 returns the order-one Bessel function of the second kind. Special cases are: Y1(+Inf) = 0 Y1(0) = -Inf Y1(x < 0) = NaN Y1(NaN) = NaN
Yn returns the order-n Bessel function of the second kind. Special cases are: Yn(n, +Inf) = 0 Yn(n ≥ 0, 0) = -Inf Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even Yn(n, x < 0) = NaN Yn(n, NaN) = NaN
Package-Level Constants (total 30)
Mathematical constants.
Mathematical constants.
Mathematical constants.
Mathematical constants.
Mathematical constants.
Floating-point limit values. Max is the largest finite value representable by the type. SmallestNonzero is the smallest positive, non-zero value representable by the type.
Floating-point limit values. Max is the largest finite value representable by the type. SmallestNonzero is the smallest positive, non-zero value representable by the type.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Integer limit values.
Mathematical constants.
Mathematical constants.
Floating-point limit values. Max is the largest finite value representable by the type. SmallestNonzero is the smallest positive, non-zero value representable by the type.
Floating-point limit values. Max is the largest finite value representable by the type. SmallestNonzero is the smallest positive, non-zero value representable by the type.
Mathematical constants.
Mathematical constants.
Mathematical constants.
Mathematical constants.