// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math/* Floating-point logarithm of the Gamma function.*/// The original C code and the long comment below are// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and// came with this notice. The go code is a simplified// version of the original C.//// ====================================================// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.//// Developed at SunPro, a Sun Microsystems, Inc. business.// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================//// __ieee754_lgamma_r(x, signgamp)// Reentrant version of the logarithm of the Gamma function// with user provided pointer for the sign of Gamma(x).//// Method:// 1. Argument Reduction for 0 < x <= 8// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may// reduce x to a number in [1.5,2.5] by// lgamma(1+s) = log(s) + lgamma(s)// for example,// lgamma(7.3) = log(6.3) + lgamma(6.3)// = log(6.3*5.3) + lgamma(5.3)// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)// 2. Polynomial approximation of lgamma around its// minimum (ymin=1.461632144968362245) to maintain monotonicity.// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use// Let z = x-ymin;// lgamma(x) = -1.214862905358496078218 + z**2*poly(z)// poly(z) is a 14 degree polynomial.// 2. Rational approximation in the primary interval [2,3]// We use the following approximation:// s = x-2.0;// lgamma(x) = 0.5*s + s*P(s)/Q(s)// with accuracy// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71// Our algorithms are based on the following observation//// zeta(2)-1 2 zeta(3)-1 3// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...// 2 3//// where Euler = 0.5772156649... is the Euler constant, which// is very close to 0.5.//// 3. For x>=8, we have// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....// (better formula:// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)// Let z = 1/x, then we approximation// f(z) = lgamma(x) - (x-0.5)(log(x)-1)// by// 3 5 11// w = w0 + w1*z + w2*z + w3*z + ... + w6*z// where// |w - f(z)| < 2**-58.74//// 4. For negative x, since (G is gamma function)// -x*G(-x)*G(x) = pi/sin(pi*x),// we have// G(x) = pi/(sin(pi*x)*(-x)*G(-x))// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0// Hence, for x<0, signgam = sign(sin(pi*x)) and// lgamma(x) = log(|Gamma(x)|)// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);// Note: one should avoid computing pi*(-x) directly in the// computation of sin(pi*(-x)).//// 5. Special Cases// lgamma(2+s) ~ s*(1-Euler) for tiny s// lgamma(1)=lgamma(2)=0// lgamma(x) ~ -log(x) for tiny x// lgamma(0) = lgamma(inf) = inf// lgamma(-integer) = +-inf////var _lgamA = [...]float64{7.72156649015328655494e-02, // 0x3FB3C467E37DB0C83.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD6.73523010531292681824e-02, // 0x3FB13E001A5562A72.05808084325167332806e-02, // 0x3F951322AC92547B7.38555086081402883957e-03, // 0x3F7E404FB68FEFE82.89051383673415629091e-03, // 0x3F67ADD8CCB7926B1.19270763183362067845e-03, // 0x3F538A94116F3F5D5.10069792153511336608e-04, // 0x3F40B6C689B99C002.20862790713908385557e-04, // 0x3F2CF2ECED10E54D1.08011567247583939954e-04, // 0x3F1C5088987DFB072.52144565451257326939e-05, // 0x3EFA7074428CFA524.48640949618915160150e-05, // 0x3F07858E90A45837}var _lgamR = [...]float64{1.0, // placeholder1.39200533467621045958e+00, // 0x3FF645A762C4AB747.21935547567138069525e-01, // 0x3FE71A1893D3DCDC1.71933865632803078993e-01, // 0x3FC601EDCCFBDF271.86459191715652901344e-02, // 0x3F9317EA742ED4757.77942496381893596434e-04, // 0x3F497DDACA41A95B7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140}var _lgamS = [...]float64{ -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C82.14982415960608852501e-01, // 0x3FCB848B36E208783.25778796408930981787e-01, // 0x3FD4D98F4F139F591.46350472652464452805e-01, // 0x3FC2BB9CBEE5F2F72.66422703033638609560e-02, // 0x3F9B481C7E9399611.84028451407337715652e-03, // 0x3F5E26B67368F2393.19475326584100867617e-05, // 0x3F00BFECDD17E945}var _lgamT = [...]float64{4.83836122723810047042e-01, // 0x3FDEF72BC8EE38A2 -1.47587722994593911752e-01, // 0xBFC2E4278DC6C5096.46249402391333854778e-02, // 0x3FB08B4294D5419B -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B7131.79706750811820387126e-02, // 0x3F9266E7970AF9EC -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A6.10053870246291332635e-03, // 0x3F78FCE0E370E344 -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D72.25964780900612472250e-03, // 0x3F6282D32E15C915 -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF18.81081882437654011382e-04, // 0x3F4CDF0CEF61A8E9 -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC3.15632070903625950361e-04, // 0x3F34AF6D6C0EBBF7 -3.12754168375120860518e-04, // 0xBF347F24ECC38C383.35529192635519073543e-04, // 0x3F35FD3EE8C2D3F4}var _lgamU = [...]float64{ -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C86.32827064025093366517e-01, // 0x3FE4401E8B005DFF1.45492250137234768737e+00, // 0x3FF7475CD119BD6F9.77717527963372745603e-01, // 0x3FEF497644EA84502.28963728064692451092e-01, // 0x3FCD4EAEF60109241.33810918536787660377e-02, // 0x3F8B678BBF2BAB09}var _lgamV = [...]float64{1.0,2.45597793713041134822e+00, // 0x4003A5D7C2BD619C2.12848976379893395361e+00, // 0x40010725A42B18F57.69285150456672783825e-01, // 0x3FE89DFBE45050AF1.04222645593369134254e-01, // 0x3FBAAE55D6537C883.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61}var _lgamW = [...]float64{4.18938533204672725052e-01, // 0x3FDACFE390C97D698.33333333333329678849e-02, // 0x3FB555555555553B -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C7.93650558643019558500e-04, // 0x3F4A019F98CF38B6 -5.95187557450339963135e-04, // 0xBF4380CB8C0FE7418.36339918996282139126e-04, // 0x3F4B67BA4CDAD5D1 -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4}// Lgamma returns the natural logarithm and sign (-1 or +1) of [Gamma](x).//// Special cases are://// Lgamma(+Inf) = +Inf// Lgamma(0) = +Inf// Lgamma(-integer) = +Inf// Lgamma(-Inf) = -Inf// Lgamma(NaN) = NaNfunc ( float64) ( float64, int) {const ( = 1.461632144968362245 = 1 << 52// 0x4330000000000000 ~4.5036e+15 = 1 << 53// 0x4340000000000000 ~9.0072e+15 = 1 << 58// 0x4390000000000000 ~2.8823e+17 = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22 = 1.46163214496836224576e+00// 0x3FF762D86356BE3F = -1.21486290535849611461e-01// 0xBFBF19B9BCC38A42// Tt = -(tail of Tf) = -3.63867699703950536541e-18// 0xBC50C7CAA48A971F )// special cases = 1switch {caseIsNaN(): = returncaseIsInf(, 0): = returncase == 0: = Inf(1)return } := falseif < 0 { = - = true }if < { // if |x| < 2**-70, return -log(|x|)if { = -1 } = -Log()return }varfloat64if {if >= { // |x| >= 2**52, must be -integer = Inf(1)return } := sinPi()if == 0 { = Inf(1) // -integerreturn } = Log(Pi / Abs(*))if < 0 { = -1 } }switch {case == 1 || == 2: // purge off 1 and 2 = 0returncase < 2: // use lgamma(x) = lgamma(x+1) - log(x)varfloat64varintif <= 0.9 { = -Log()switch {case >= ( - 1 + 0.27): // 0.7316 <= x <= 0.9 = 1 - = 0case >= ( - 1 - 0.27): // 0.2316 <= x < 0.7316 = - ( - 1) = 1default: // 0 < x < 0.2316 = = 2 } } else { = 0switch {case >= ( + 0.27): // 1.7316 <= x < 2 = 2 - = 0case >= ( - 0.27): // 1.2316 <= x < 1.7316 = - = 1default: // 0.9 < x < 1.2316 = - 1 = 2 } }switch {case0: := * := _lgamA[0] + *(_lgamA[2]+*(_lgamA[4]+*(_lgamA[6]+*(_lgamA[8]+*_lgamA[10])))) := * (_lgamA[1] + *(+_lgamA[3]+*(_lgamA[5]+*(_lgamA[7]+*(_lgamA[9]+*_lgamA[11]))))) := * + += ( - 0.5*)case1: := * := * := _lgamT[0] + *(_lgamT[3]+*(_lgamT[6]+*(_lgamT[9]+*_lgamT[12]))) // parallel comp := _lgamT[1] + *(_lgamT[4]+*(_lgamT[7]+*(_lgamT[10]+*_lgamT[13]))) := _lgamT[2] + *(_lgamT[5]+*(_lgamT[8]+*(_lgamT[11]+*_lgamT[14]))) := * - ( - *(+*)) += ( + )case2: := * (_lgamU[0] + *(_lgamU[1]+*(_lgamU[2]+*(_lgamU[3]+*(_lgamU[4]+*_lgamU[5]))))) := 1 + *(_lgamV[1]+*(_lgamV[2]+*(_lgamV[3]+*(_lgamV[4]+*_lgamV[5])))) += (-0.5* + /) }case < 8: // 2 <= x < 8 := int() := - float64() := * (_lgamS[0] + *(_lgamS[1]+*(_lgamS[2]+*(_lgamS[3]+*(_lgamS[4]+*(_lgamS[5]+*_lgamS[6])))))) := 1 + *(_lgamR[1]+*(_lgamR[2]+*(_lgamR[3]+*(_lgamR[4]+*(_lgamR[5]+*_lgamR[6]))))) = 0.5* + / := 1.0// Lgamma(1+s) = Log(s) + Lgamma(s)switch {case7: *= ( + 6)fallthroughcase6: *= ( + 5)fallthroughcase5: *= ( + 4)fallthroughcase4: *= ( + 3)fallthroughcase3: *= ( + 2) += Log() }case < : // 8 <= x < 2**58 := Log() := 1 / := * := _lgamW[0] + *(_lgamW[1]+*(_lgamW[2]+*(_lgamW[3]+*(_lgamW[4]+*(_lgamW[5]+*_lgamW[6]))))) = (-0.5)*(-1) + default: // 2**58 <= x <= Inf = * (Log() - 1) }if { = - }return}// sinPi(x) is a helper function for negative xfunc sinPi( float64) float64 {const ( = 1 << 52// 0x4330000000000000 ~4.5036e+15 = 1 << 53// 0x4340000000000000 ~9.0072e+15 )if < 0.25 {return -Sin(Pi * ) }// argument reduction := Floor()varintif != { // inexact = Mod(, 2) = int( * 4) } else {if >= { // x must be even = 0 = 0 } else {if < { = + // exact } = int(1 & Float64bits()) = float64() <<= 2 } }switch {case0: = Sin(Pi * )case1, 2: = Cos(Pi * (0.5 - ))case3, 4: = Sin(Pi * (1 - ))case5, 6: = -Cos(Pi * ( - 1.5))default: = Sin(Pi * ( - 2)) }return -}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.