Source File
log1p.go
Belonging Package
math
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double log1p(double x)
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2**k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// and
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if(u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than [Log](1 + x) when x is near zero.
//
// Special cases are:
//
// Log1p(+Inf) = +Inf
// Log1p(±0) = ±0
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func ( float64) float64 {
if haveArchLog1p {
return archLog1p()
}
return log1p()
}
func log1p( float64) float64 {
const (
= 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
= -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
= 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000
= 1.0 / (1 << 54) // 2**-54
= 1 << 53 // 2**53
= 6.93147180369123816490e-01 // 3fe62e42fee00000
= 1.90821492927058770002e-10 // 3dea39ef35793c76
= 6.666666666666735130e-01 // 3FE5555555555593
= 3.999999999940941908e-01 // 3FD999999997FA04
= 2.857142874366239149e-01 // 3FD2492494229359
= 2.222219843214978396e-01 // 3FCC71C51D8E78AF
= 1.818357216161805012e-01 // 3FC7466496CB03DE
= 1.531383769920937332e-01 // 3FC39A09D078C69F
= 1.479819860511658591e-01 // 3FC2F112DF3E5244
)
// special cases
switch {
case < -1 || IsNaN(): // includes -Inf
return NaN()
case == -1:
return Inf(-1)
case IsInf(, 1):
return Inf(1)
}
:= Abs()
var float64
var uint64
:= 1
if < { // |x| < Sqrt(2)-1
if < { // |x| < 2**-29
if < { // |x| < 2**-54
return
}
return - **0.5
}
if > { // Sqrt(2)/2-1 < x
// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
= 0
=
= 1
}
}
var float64
if != 0 {
var float64
if < { // 1<<53
= 1.0 +
= Float64bits()
= int(( >> 52) - 1023)
// correction term
if > 0 {
= 1.0 - ( - )
} else {
= - ( - 1.0)
}
/=
} else {
=
= Float64bits()
= int(( >> 52) - 1023)
= 0
}
&= 0x000fffffffffffff
if < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
= Float64frombits( | 0x3ff0000000000000) // normalize u
} else {
++
= Float64frombits( | 0x3fe0000000000000) // normalize u/2
= (0x0010000000000000 - ) >> 2
}
= - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
}
:= 0.5 * *
var , , float64
if == 0 { // |f| < 2**-20
if == 0 {
if == 0 {
return 0
}
+= float64() *
return float64()* +
}
= * (1.0 - 0.66666666666666666*) // avoid division
if == 0 {
return -
}
return float64()* - (( - (float64()* + )) - )
}
= / (2.0 + )
= *
= * ( + *(+*(+*(+*(+*(+*))))))
if == 0 {
return - ( - *(+))
}
return float64()* - (( - (*(+) + (float64()* + ))) - )
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |