// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package rand implements pseudo-random number generators suitable for tasks // such as simulation, but it should not be used for security-sensitive work. // // Random numbers are generated by a [Source], usually wrapped in a [Rand]. // Both types should be used by a single goroutine at a time: sharing among // multiple goroutines requires some kind of synchronization. // // Top-level functions, such as [Float64] and [Int], // are safe for concurrent use by multiple goroutines. // // This package's outputs might be easily predictable regardless of how it's // seeded. For random numbers suitable for security-sensitive work, see the // [crypto/rand] package.
package rand import ( _ // for go:linkname ) // A Source is a source of uniformly-distributed // pseudo-random uint64 values in the range [0, 1<<64). // // A Source is not safe for concurrent use by multiple goroutines. type Source interface { Uint64() uint64 } // A Rand is a source of random numbers. type Rand struct { src Source } // New returns a new Rand that uses random values from src // to generate other random values. func ( Source) *Rand { return &Rand{src: } } // Int64 returns a non-negative pseudo-random 63-bit integer as an int64. func ( *Rand) () int64 { return int64(.src.Uint64() &^ (1 << 63)) } // Uint32 returns a pseudo-random 32-bit value as a uint32. func ( *Rand) () uint32 { return uint32(.src.Uint64() >> 32) } // Uint64 returns a pseudo-random 64-bit value as a uint64. func ( *Rand) () uint64 { return .src.Uint64() } // Int32 returns a non-negative pseudo-random 31-bit integer as an int32. func ( *Rand) () int32 { return int32(.src.Uint64() >> 33) } // Int returns a non-negative pseudo-random int. func ( *Rand) () int { return int(uint(.src.Uint64()) << 1 >> 1) } // Uint returns a pseudo-random uint. func ( *Rand) () uint { return uint(.src.Uint64()) } // Int64N returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n). // It panics if n <= 0. func ( *Rand) ( int64) int64 { if <= 0 { panic("invalid argument to Int64N") } return int64(.uint64n(uint64())) } // Uint64N returns, as a uint64, a non-negative pseudo-random number in the half-open interval [0,n). // It panics if n == 0. func ( *Rand) ( uint64) uint64 { if == 0 { panic("invalid argument to Uint64N") } return .uint64n() } // uint64n is the no-bounds-checks version of Uint64N. func ( *Rand) ( uint64) uint64 { if is32bit && uint64(uint32()) == { return uint64(.uint32n(uint32())) } if &(-1) == 0 { // n is power of two, can mask return .Uint64() & ( - 1) } // Suppose we have a uint64 x uniform in the range [0,2⁶⁴) // and want to reduce it to the range [0,n) preserving exact uniformity. // We can simulate a scaling arbitrary precision x * (n/2⁶⁴) by // the high bits of a double-width multiply of x*n, meaning (x*n)/2⁶⁴. // Since there are 2⁶⁴ possible inputs x and only n possible outputs, // the output is necessarily biased if n does not divide 2⁶⁴. // In general (x*n)/2⁶⁴ = k for x*n in [k*2⁶⁴,(k+1)*2⁶⁴). // There are either floor(2⁶⁴/n) or ceil(2⁶⁴/n) possible products // in that range, depending on k. // But suppose we reject the sample and try again when // x*n is in [k*2⁶⁴, k*2⁶⁴+(2⁶⁴%n)), meaning rejecting fewer than n possible // outcomes out of the 2⁶⁴. // Now there are exactly floor(2⁶⁴/n) possible ways to produce // each output value k, so we've restored uniformity. // To get valid uint64 math, 2⁶⁴ % n = (2⁶⁴ - n) % n = -n % n, // so the direct implementation of this algorithm would be: // // hi, lo := bits.Mul64(r.Uint64(), n) // thresh := -n % n // for lo < thresh { // hi, lo = bits.Mul64(r.Uint64(), n) // } // // That still leaves an expensive 64-bit division that we would rather avoid. // We know that thresh < n, and n is usually much less than 2⁶⁴, so we can // avoid the last four lines unless lo < n. // // See also: // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction // https://lemire.me/blog/2016/06/30/fast-random-shuffling , := bits.Mul64(.Uint64(), ) if < { := - % for < { , = bits.Mul64(.Uint64(), ) } } return } // uint32n is an identical computation to uint64n // but optimized for 32-bit systems. func ( *Rand) ( uint32) uint32 { if &(-1) == 0 { // n is power of two, can mask return uint32(.Uint64()) & ( - 1) } // On 64-bit systems we still use the uint64 code below because // the probability of a random uint64 lo being < a uint32 n is near zero, // meaning the unbiasing loop almost never runs. // On 32-bit systems, here we need to implement that same logic in 32-bit math, // both to preserve the exact output sequence observed on 64-bit machines // and to preserve the optimization that the unbiasing loop almost never runs. // // We want to compute // hi, lo := bits.Mul64(r.Uint64(), n) // In terms of 32-bit halves, this is: // x1:x0 := r.Uint64() // 0:hi, lo1:lo0 := bits.Mul64(x1:x0, 0:n) // Writing out the multiplication in terms of bits.Mul32 allows // using direct hardware instructions and avoiding // the computations involving these zeros. := .Uint64() , := bits.Mul32(uint32(), ) , := bits.Mul32(uint32(>>32), ) , := bits.Add32(, , 0) += if == 0 && < uint32() { := uint64() := uint32(- % ) for == 0 && < { := .Uint64() , = bits.Mul32(uint32(), ) , = bits.Mul32(uint32(>>32), ) , = bits.Add32(, , 0) += } } return } // Int32N returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n). // It panics if n <= 0. func ( *Rand) ( int32) int32 { if <= 0 { panic("invalid argument to Int32N") } return int32(.uint64n(uint64())) } // Uint32N returns, as a uint32, a non-negative pseudo-random number in the half-open interval [0,n). // It panics if n == 0. func ( *Rand) ( uint32) uint32 { if == 0 { panic("invalid argument to Uint32N") } return uint32(.uint64n(uint64())) } const is32bit = ^uint(0)>>32 == 0 // IntN returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n). // It panics if n <= 0. func ( *Rand) ( int) int { if <= 0 { panic("invalid argument to IntN") } return int(.uint64n(uint64())) } // UintN returns, as a uint, a non-negative pseudo-random number in the half-open interval [0,n). // It panics if n == 0. func ( *Rand) ( uint) uint { if == 0 { panic("invalid argument to UintN") } return uint(.uint64n(uint64())) } // Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0). func ( *Rand) () float64 { // There are exactly 1<<53 float64s in [0,1). Use Intn(1<<53) / (1<<53). return float64(.Uint64()<<11>>11) / (1 << 53) } // Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0). func ( *Rand) () float32 { // There are exactly 1<<24 float32s in [0,1). Use Intn(1<<24) / (1<<24). return float32(.Uint32()<<8>>8) / (1 << 24) } // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers // in the half-open interval [0,n). func ( *Rand) ( int) []int { := make([]int, ) for := range { [] = } .Shuffle(len(), func(, int) { [], [] = [], [] }) return } // Shuffle pseudo-randomizes the order of elements. // n is the number of elements. Shuffle panics if n < 0. // swap swaps the elements with indexes i and j. func ( *Rand) ( int, func(, int)) { if < 0 { panic("invalid argument to Shuffle") } // Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle // Shuffle really ought not be called with n that doesn't fit in 32 bits. // Not only will it take a very long time, but with 2³¹! possible permutations, // there's no way that any PRNG can have a big enough internal state to // generate even a minuscule percentage of the possible permutations. // Nevertheless, the right API signature accepts an int n, so handle it as best we can. for := - 1; > 0; -- { := int(.uint64n(uint64( + 1))) (, ) } } /* * Top-level convenience functions */ // globalRand is the source of random numbers for the top-level // convenience functions. var globalRand = &Rand{src: runtimeSource{}} //go:linkname runtime_rand runtime.rand func runtime_rand() uint64 // runtimeSource is a Source that uses the runtime fastrand functions. type runtimeSource struct{} func (runtimeSource) () uint64 { return runtime_rand() } // Int64 returns a non-negative pseudo-random 63-bit integer as an int64 // from the default Source. func () int64 { return globalRand.Int64() } // Uint32 returns a pseudo-random 32-bit value as a uint32 // from the default Source. func () uint32 { return globalRand.Uint32() } // Uint64N returns, as a uint64, a pseudo-random number in the half-open interval [0,n) // from the default Source. // It panics if n <= 0. func ( uint64) uint64 { return globalRand.Uint64N() } // Uint32N returns, as a uint32, a pseudo-random number in the half-open interval [0,n) // from the default Source. // It panics if n <= 0. func ( uint32) uint32 { return globalRand.Uint32N() } // Uint64 returns a pseudo-random 64-bit value as a uint64 // from the default Source. func () uint64 { return globalRand.Uint64() } // Int32 returns a non-negative pseudo-random 31-bit integer as an int32 // from the default Source. func () int32 { return globalRand.Int32() } // Int returns a non-negative pseudo-random int from the default Source. func () int { return globalRand.Int() } // Uint returns a pseudo-random uint from the default Source. func () uint { return globalRand.Uint() } // Int64N returns, as an int64, a pseudo-random number in the half-open interval [0,n) // from the default Source. // It panics if n <= 0. func ( int64) int64 { return globalRand.Int64N() } // Int32N returns, as an int32, a pseudo-random number in the half-open interval [0,n) // from the default Source. // It panics if n <= 0. func ( int32) int32 { return globalRand.Int32N() } // IntN returns, as an int, a pseudo-random number in the half-open interval [0,n) // from the default Source. // It panics if n <= 0. func ( int) int { return globalRand.IntN() } // UintN returns, as a uint, a pseudo-random number in the half-open interval [0,n) // from the default Source. // It panics if n <= 0. func ( uint) uint { return globalRand.UintN() } // N returns a pseudo-random number in the half-open interval [0,n) from the default Source. // The type parameter Int can be any integer type. // It panics if n <= 0. func [ intType]( ) { if <= 0 { panic("invalid argument to N") } return (globalRand.uint64n(uint64())) } type intType interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr } // Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0) // from the default Source. func () float64 { return globalRand.Float64() } // Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0) // from the default Source. func () float32 { return globalRand.Float32() } // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers // in the half-open interval [0,n) from the default Source. func ( int) []int { return globalRand.Perm() } // Shuffle pseudo-randomizes the order of elements using the default Source. // n is the number of elements. Shuffle panics if n < 0. // swap swaps the elements with indexes i and j. func ( int, func(, int)) { globalRand.Shuffle(, ) } // NormFloat64 returns a normally distributed float64 in the range // [-math.MaxFloat64, +math.MaxFloat64] with // standard normal distribution (mean = 0, stddev = 1) // from the default Source. // To produce a different normal distribution, callers can // adjust the output using: // // sample = NormFloat64() * desiredStdDev + desiredMean func () float64 { return globalRand.NormFloat64() } // ExpFloat64 returns an exponentially distributed float64 in the range // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. // To produce a distribution with a different rate parameter, // callers can adjust the output using: // // sample = ExpFloat64() / desiredRateParameter func () float64 { return globalRand.ExpFloat64() }