// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package strconv

import 

const fastSmalls = true // enable fast path for small integers

// FormatUint returns the string representation of i in the given base,
// for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z'
// for digit values >= 10.
func ( uint64,  int) string {
	if fastSmalls &&  < nSmalls &&  == 10 {
		return small(int())
	}
	,  := formatBits(nil, , , false, false)
	return 
}

// FormatInt returns the string representation of i in the given base,
// for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z'
// for digit values >= 10.
func ( int64,  int) string {
	if fastSmalls && 0 <=  &&  < nSmalls &&  == 10 {
		return small(int())
	}
	,  := formatBits(nil, uint64(), ,  < 0, false)
	return 
}

// Itoa is equivalent to [FormatInt](int64(i), 10).
func ( int) string {
	return FormatInt(int64(), 10)
}

// AppendInt appends the string form of the integer i,
// as generated by [FormatInt], to dst and returns the extended buffer.
func ( []byte,  int64,  int) []byte {
	if fastSmalls && 0 <=  &&  < nSmalls &&  == 10 {
		return append(, small(int())...)
	}
	, _ = formatBits(, uint64(), ,  < 0, true)
	return 
}

// AppendUint appends the string form of the unsigned integer i,
// as generated by [FormatUint], to dst and returns the extended buffer.
func ( []byte,  uint64,  int) []byte {
	if fastSmalls &&  < nSmalls &&  == 10 {
		return append(, small(int())...)
	}
	, _ = formatBits(, , , false, true)
	return 
}

// small returns the string for an i with 0 <= i < nSmalls.
func small( int) string {
	if  < 10 {
		return digits[ : +1]
	}
	return smallsString[*2 : *2+2]
}

const nSmalls = 100

const smallsString = "00010203040506070809" +
	"10111213141516171819" +
	"20212223242526272829" +
	"30313233343536373839" +
	"40414243444546474849" +
	"50515253545556575859" +
	"60616263646566676869" +
	"70717273747576777879" +
	"80818283848586878889" +
	"90919293949596979899"

const host32bit = ^uint(0)>>32 == 0

const digits = "0123456789abcdefghijklmnopqrstuvwxyz"

// formatBits computes the string representation of u in the given base.
// If neg is set, u is treated as negative int64 value. If append_ is
// set, the string is appended to dst and the resulting byte slice is
// returned as the first result value; otherwise the string is returned
// as the second result value.
func formatBits( []byte,  uint64,  int, ,  bool) ( []byte,  string) {
	if  < 2 ||  > len(digits) {
		panic("strconv: illegal AppendInt/FormatInt base")
	}
	// 2 <= base && base <= len(digits)

	var  [64 + 1]byte // +1 for sign of 64bit value in base 2
	 := len()

	if  {
		 = -
	}

	// convert bits
	// We use uint values where we can because those will
	// fit into a single register even on a 32bit machine.
	if  == 10 {
		// common case: use constants for / because
		// the compiler can optimize it into a multiply+shift

		if host32bit {
			// convert the lower digits using 32bit operations
			for  >= 1e9 {
				// Avoid using r = a%b in addition to q = a/b
				// since 64bit division and modulo operations
				// are calculated by runtime functions on 32bit machines.
				 :=  / 1e9
				 := uint( - *1e9) // u % 1e9 fits into a uint
				for  := 4;  > 0; -- {
					 :=  % 100 * 2
					 /= 100
					 -= 2
					[+1] = smallsString[+1]
					[+0] = smallsString[+0]
				}

				// us < 10, since it contains the last digit
				// from the initial 9-digit us.
				--
				[] = smallsString[*2+1]

				 = 
			}
			// u < 1e9
		}

		// u guaranteed to fit into a uint
		 := uint()
		for  >= 100 {
			 :=  % 100 * 2
			 /= 100
			 -= 2
			[+1] = smallsString[+1]
			[+0] = smallsString[+0]
		}

		// us < 100
		 :=  * 2
		--
		[] = smallsString[+1]
		if  >= 10 {
			--
			[] = smallsString[]
		}

	} else if isPowerOfTwo() {
		// Use shifts and masks instead of / and %.
		// Base is a power of 2 and 2 <= base <= len(digits) where len(digits) is 36.
		// The largest power of 2 below or equal to 36 is 32, which is 1 << 5;
		// i.e., the largest possible shift count is 5. By &-ind that value with
		// the constant 7 we tell the compiler that the shift count is always
		// less than 8 which is smaller than any register width. This allows
		// the compiler to generate better code for the shift operation.
		 := uint(bits.TrailingZeros(uint())) & 7
		 := uint64()
		 := uint() - 1 // == 1<<shift - 1
		for  >=  {
			--
			[] = digits[uint()&]
			 >>= 
		}
		// u < base
		--
		[] = digits[uint()]
	} else {
		// general case
		 := uint64()
		for  >=  {
			--
			// Avoid using r = a%b in addition to q = a/b
			// since 64bit division and modulo operations
			// are calculated by runtime functions on 32bit machines.
			 :=  / 
			[] = digits[uint(-*)]
			 = 
		}
		// u < base
		--
		[] = digits[uint()]
	}

	// add sign, if any
	if  {
		--
		[] = '-'
	}

	if  {
		 = append(, [:]...)
		return
	}
	 = string([:])
	return
}

func isPowerOfTwo( int) bool {
	return &(-1) == 0
}