// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package sync

import (
	
	
	
	
)

// A Pool is a set of temporary objects that may be individually saved and
// retrieved.
//
// Any item stored in the Pool may be removed automatically at any time without
// notification. If the Pool holds the only reference when this happens, the
// item might be deallocated.
//
// A Pool is safe for use by multiple goroutines simultaneously.
//
// Pool's purpose is to cache allocated but unused items for later reuse,
// relieving pressure on the garbage collector. That is, it makes it easy to
// build efficient, thread-safe free lists. However, it is not suitable for all
// free lists.
//
// An appropriate use of a Pool is to manage a group of temporary items
// silently shared among and potentially reused by concurrent independent
// clients of a package. Pool provides a way to amortize allocation overhead
// across many clients.
//
// An example of good use of a Pool is in the fmt package, which maintains a
// dynamically-sized store of temporary output buffers. The store scales under
// load (when many goroutines are actively printing) and shrinks when
// quiescent.
//
// On the other hand, a free list maintained as part of a short-lived object is
// not a suitable use for a Pool, since the overhead does not amortize well in
// that scenario. It is more efficient to have such objects implement their own
// free list.
//
// A Pool must not be copied after first use.
//
// In the terminology of [the Go memory model], a call to Put(x) “synchronizes before”
// a call to [Pool.Get] returning that same value x.
// Similarly, a call to New returning x “synchronizes before”
// a call to Get returning that same value x.
//
// [the Go memory model]: https://go.dev/ref/mem
type Pool struct {
	noCopy noCopy

	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
	localSize uintptr        // size of the local array

	victim     unsafe.Pointer // local from previous cycle
	victimSize uintptr        // size of victims array

	// New optionally specifies a function to generate
	// a value when Get would otherwise return nil.
	// It may not be changed concurrently with calls to Get.
	New func() any
}

// Local per-P Pool appendix.
type poolLocalInternal struct {
	private any       // Can be used only by the respective P.
	shared  poolChain // Local P can pushHead/popHead; any P can popTail.
}

type poolLocal struct {
	poolLocalInternal

	// Prevents false sharing on widespread platforms with
	// 128 mod (cache line size) = 0 .
	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}

// from runtime
//
//go:linkname runtime_randn runtime.randn
func runtime_randn( uint32) uint32

var poolRaceHash [128]uint64

// poolRaceAddr returns an address to use as the synchronization point
// for race detector logic. We don't use the actual pointer stored in x
// directly, for fear of conflicting with other synchronization on that address.
// Instead, we hash the pointer to get an index into poolRaceHash.
// See discussion on golang.org/cl/31589.
func poolRaceAddr( any) unsafe.Pointer {
	 := uintptr((*[2]unsafe.Pointer)(unsafe.Pointer(&))[1])
	 := uint32((uint64(uint32()) * 0x85ebca6b) >> 16)
	return unsafe.Pointer(&poolRaceHash[%uint32(len(poolRaceHash))])
}

// Put adds x to the pool.
func ( *Pool) ( any) {
	if  == nil {
		return
	}
	if race.Enabled {
		if runtime_randn(4) == 0 {
			// Randomly drop x on floor.
			return
		}
		race.ReleaseMerge(poolRaceAddr())
		race.Disable()
	}
	,  := .pin()
	if .private == nil {
		.private = 
	} else {
		.shared.pushHead()
	}
	runtime_procUnpin()
	if race.Enabled {
		race.Enable()
	}
}

// Get selects an arbitrary item from the [Pool], removes it from the
// Pool, and returns it to the caller.
// Get may choose to ignore the pool and treat it as empty.
// Callers should not assume any relation between values passed to [Pool.Put] and
// the values returned by Get.
//
// If Get would otherwise return nil and p.New is non-nil, Get returns
// the result of calling p.New.
func ( *Pool) () any {
	if race.Enabled {
		race.Disable()
	}
	,  := .pin()
	 := .private
	.private = nil
	if  == nil {
		// Try to pop the head of the local shard. We prefer
		// the head over the tail for temporal locality of
		// reuse.
		, _ = .shared.popHead()
		if  == nil {
			 = .getSlow()
		}
	}
	runtime_procUnpin()
	if race.Enabled {
		race.Enable()
		if  != nil {
			race.Acquire(poolRaceAddr())
		}
	}
	if  == nil && .New != nil {
		 = .New()
	}
	return 
}

func ( *Pool) ( int) any {
	// See the comment in pin regarding ordering of the loads.
	 := runtime_LoadAcquintptr(&.localSize) // load-acquire
	 := .local                            // load-consume
	// Try to steal one element from other procs.
	for  := 0;  < int(); ++ {
		 := indexLocal(, (++1)%int())
		if ,  := .shared.popTail();  != nil {
			return 
		}
	}

	// Try the victim cache. We do this after attempting to steal
	// from all primary caches because we want objects in the
	// victim cache to age out if at all possible.
	 = atomic.LoadUintptr(&.victimSize)
	if uintptr() >=  {
		return nil
	}
	 = .victim
	 := indexLocal(, )
	if  := .private;  != nil {
		.private = nil
		return 
	}
	for  := 0;  < int(); ++ {
		 := indexLocal(, (+)%int())
		if ,  := .shared.popTail();  != nil {
			return 
		}
	}

	// Mark the victim cache as empty for future gets don't bother
	// with it.
	atomic.StoreUintptr(&.victimSize, 0)

	return nil
}

// pin pins the current goroutine to P, disables preemption and
// returns poolLocal pool for the P and the P's id.
// Caller must call runtime_procUnpin() when done with the pool.
func ( *Pool) () (*poolLocal, int) {
	// Check whether p is nil to get a panic.
	// Otherwise the nil dereference happens while the m is pinned,
	// causing a fatal error rather than a panic.
	if  == nil {
		panic("nil Pool")
	}

	 := runtime_procPin()
	// In pinSlow we store to local and then to localSize, here we load in opposite order.
	// Since we've disabled preemption, GC cannot happen in between.
	// Thus here we must observe local at least as large localSize.
	// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
	 := runtime_LoadAcquintptr(&.localSize) // load-acquire
	 := .local                              // load-consume
	if uintptr() <  {
		return indexLocal(, ), 
	}
	return .pinSlow()
}

func ( *Pool) () (*poolLocal, int) {
	// Retry under the mutex.
	// Can not lock the mutex while pinned.
	runtime_procUnpin()
	allPoolsMu.Lock()
	defer allPoolsMu.Unlock()
	 := runtime_procPin()
	// poolCleanup won't be called while we are pinned.
	 := .localSize
	 := .local
	if uintptr() <  {
		return indexLocal(, ), 
	}
	if .local == nil {
		allPools = append(allPools, )
	}
	// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
	 := runtime.GOMAXPROCS(0)
	 := make([]poolLocal, )
	atomic.StorePointer(&.local, unsafe.Pointer(&[0])) // store-release
	runtime_StoreReluintptr(&.localSize, uintptr())     // store-release
	return &[], 
}

// poolCleanup should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/bytedance/gopkg
//   - github.com/songzhibin97/gkit
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname poolCleanup
func poolCleanup() {
	// This function is called with the world stopped, at the beginning of a garbage collection.
	// It must not allocate and probably should not call any runtime functions.

	// Because the world is stopped, no pool user can be in a
	// pinned section (in effect, this has all Ps pinned).

	// Drop victim caches from all pools.
	for ,  := range oldPools {
		.victim = nil
		.victimSize = 0
	}

	// Move primary cache to victim cache.
	for ,  := range allPools {
		.victim = .local
		.victimSize = .localSize
		.local = nil
		.localSize = 0
	}

	// The pools with non-empty primary caches now have non-empty
	// victim caches and no pools have primary caches.
	oldPools, allPools = allPools, nil
}

var (
	allPoolsMu Mutex

	// allPools is the set of pools that have non-empty primary
	// caches. Protected by either 1) allPoolsMu and pinning or 2)
	// STW.
	allPools []*Pool

	// oldPools is the set of pools that may have non-empty victim
	// caches. Protected by STW.
	oldPools []*Pool
)

func init() {
	runtime_registerPoolCleanup(poolCleanup)
}

func indexLocal( unsafe.Pointer,  int) *poolLocal {
	 := unsafe.Pointer(uintptr() + uintptr()*unsafe.Sizeof(poolLocal{}))
	return (*poolLocal)()
}

// Implemented in runtime.
func runtime_registerPoolCleanup( func())
func runtime_procPin() int
func runtime_procUnpin()

// The below are implemented in internal/runtime/atomic and the
// compiler also knows to intrinsify the symbol we linkname into this
// package.

//go:linkname runtime_LoadAcquintptr internal/runtime/atomic.LoadAcquintptr
func runtime_LoadAcquintptr( *uintptr) uintptr

//go:linkname runtime_StoreReluintptr internal/runtime/atomic.StoreReluintptr
func runtime_StoreReluintptr( *uintptr,  uintptr) uintptr