package strings

Import Path
	strings (on go.dev)

Dependency Relation
	imports 11 packages, and imported by 96 packages

Involved Source Files builder.go clone.go compare.go iter.go reader.go replace.go search.go Package strings implements simple functions to manipulate UTF-8 encoded strings. For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
Code Examples package main import ( "fmt" "strings" ) func main() { var b strings.Builder for i := 3; i >= 1; i-- { fmt.Fprintf(&b, "%d...", i) } b.WriteString("ignition") fmt.Println(b.String()) } package main import ( "fmt" "strings" "unsafe" ) func main() { s := "abc" clone := strings.Clone(s) fmt.Println(s == clone) fmt.Println(unsafe.StringData(s) == unsafe.StringData(clone)) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.Compare("a", "b")) fmt.Println(strings.Compare("a", "a")) fmt.Println(strings.Compare("b", "a")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.Contains("seafood", "foo")) fmt.Println(strings.Contains("seafood", "bar")) fmt.Println(strings.Contains("seafood", "")) fmt.Println(strings.Contains("", "")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.ContainsAny("team", "i")) fmt.Println(strings.ContainsAny("fail", "ui")) fmt.Println(strings.ContainsAny("ure", "ui")) fmt.Println(strings.ContainsAny("failure", "ui")) fmt.Println(strings.ContainsAny("foo", "")) fmt.Println(strings.ContainsAny("", "")) } package main import ( "fmt" "strings" ) func main() { f := func(r rune) bool { return r == 'a' || r == 'e' || r == 'i' || r == 'o' || r == 'u' } fmt.Println(strings.ContainsFunc("hello", f)) fmt.Println(strings.ContainsFunc("rhythms", f)) } package main import ( "fmt" "strings" ) func main() { // Finds whether a string contains a particular Unicode code point. // The code point for the lowercase letter "a", for example, is 97. fmt.Println(strings.ContainsRune("aardvark", 97)) fmt.Println(strings.ContainsRune("timeout", 97)) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.Count("cheese", "e")) fmt.Println(strings.Count("five", "")) // before & after each rune } package main import ( "fmt" "strings" ) func main() { show := func(s, sep string) { before, after, found := strings.Cut(s, sep) fmt.Printf("Cut(%q, %q) = %q, %q, %v\n", s, sep, before, after, found) } show("Gopher", "Go") show("Gopher", "ph") show("Gopher", "er") show("Gopher", "Badger") } package main import ( "fmt" "strings" ) func main() { show := func(s, sep string) { after, found := strings.CutPrefix(s, sep) fmt.Printf("CutPrefix(%q, %q) = %q, %v\n", s, sep, after, found) } show("Gopher", "Go") show("Gopher", "ph") } package main import ( "fmt" "strings" ) func main() { show := func(s, sep string) { before, found := strings.CutSuffix(s, sep) fmt.Printf("CutSuffix(%q, %q) = %q, %v\n", s, sep, before, found) } show("Gopher", "Go") show("Gopher", "er") } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.EqualFold("Go", "go")) fmt.Println(strings.EqualFold("AB", "ab")) // true because comparison uses simple case-folding fmt.Println(strings.EqualFold("ß", "ss")) // false because comparison does not use full case-folding } package main import ( "fmt" "strings" ) func main() { fmt.Printf("Fields are: %q", strings.Fields(" foo bar baz ")) } package main import ( "fmt" "strings" "unicode" ) func main() { f := func(c rune) bool { return !unicode.IsLetter(c) && !unicode.IsNumber(c) } fmt.Printf("Fields are: %q", strings.FieldsFunc(" foo1;bar2,baz3...", f)) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.HasPrefix("Gopher", "Go")) fmt.Println(strings.HasPrefix("Gopher", "C")) fmt.Println(strings.HasPrefix("Gopher", "")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.HasSuffix("Amigo", "go")) fmt.Println(strings.HasSuffix("Amigo", "O")) fmt.Println(strings.HasSuffix("Amigo", "Ami")) fmt.Println(strings.HasSuffix("Amigo", "")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.Index("chicken", "ken")) fmt.Println(strings.Index("chicken", "dmr")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.IndexAny("chicken", "aeiouy")) fmt.Println(strings.IndexAny("crwth", "aeiouy")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.IndexByte("golang", 'g')) fmt.Println(strings.IndexByte("gophers", 'h')) fmt.Println(strings.IndexByte("golang", 'x')) } package main import ( "fmt" "strings" "unicode" ) func main() { f := func(c rune) bool { return unicode.Is(unicode.Han, c) } fmt.Println(strings.IndexFunc("Hello, 世界", f)) fmt.Println(strings.IndexFunc("Hello, world", f)) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.IndexRune("chicken", 'k')) fmt.Println(strings.IndexRune("chicken", 'd')) } package main import ( "fmt" "strings" ) func main() { s := []string{"foo", "bar", "baz"} fmt.Println(strings.Join(s, ", ")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.Index("go gopher", "go")) fmt.Println(strings.LastIndex("go gopher", "go")) fmt.Println(strings.LastIndex("go gopher", "rodent")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.LastIndexAny("go gopher", "go")) fmt.Println(strings.LastIndexAny("go gopher", "rodent")) fmt.Println(strings.LastIndexAny("go gopher", "fail")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.LastIndexByte("Hello, world", 'l')) fmt.Println(strings.LastIndexByte("Hello, world", 'o')) fmt.Println(strings.LastIndexByte("Hello, world", 'x')) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Println(strings.LastIndexFunc("go 123", unicode.IsNumber)) fmt.Println(strings.LastIndexFunc("123 go", unicode.IsNumber)) fmt.Println(strings.LastIndexFunc("go", unicode.IsNumber)) } package main import ( "fmt" "strings" ) func main() { rot13 := func(r rune) rune { switch { case r >= 'A' && r <= 'Z': return 'A' + (r-'A'+13)%26 case r >= 'a' && r <= 'z': return 'a' + (r-'a'+13)%26 } return r } fmt.Println(strings.Map(rot13, "'Twas brillig and the slithy gopher...")) } package main import ( "fmt" "strings" ) func main() { r := strings.NewReplacer("<", "&lt;", ">", "&gt;") fmt.Println(r.Replace("This is <b>HTML</b>!")) } package main import ( "fmt" "strings" ) func main() { fmt.Println("ba" + strings.Repeat("na", 2)) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.Replace("oink oink oink", "k", "ky", 2)) fmt.Println(strings.Replace("oink oink oink", "oink", "moo", -1)) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.ReplaceAll("oink oink oink", "oink", "moo")) } package main import ( "fmt" "strings" ) func main() { fmt.Printf("%q\n", strings.Split("a,b,c", ",")) fmt.Printf("%q\n", strings.Split("a man a plan a canal panama", "a ")) fmt.Printf("%q\n", strings.Split(" xyz ", "")) fmt.Printf("%q\n", strings.Split("", "Bernardo O'Higgins")) } package main import ( "fmt" "strings" ) func main() { fmt.Printf("%q\n", strings.SplitAfter("a,b,c", ",")) } package main import ( "fmt" "strings" ) func main() { fmt.Printf("%q\n", strings.SplitAfterN("a,b,c", ",", 2)) } package main import ( "fmt" "strings" ) func main() { fmt.Printf("%q\n", strings.SplitN("a,b,c", ",", 2)) z := strings.SplitN("a,b,c", ",", 0) fmt.Printf("%q (nil = %v)\n", z, z == nil) } package main import ( "fmt" "strings" ) func main() { // Compare this example to the ToTitle example. fmt.Println(strings.Title("her royal highness")) fmt.Println(strings.Title("loud noises")) fmt.Println(strings.Title("брат")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.ToLower("Gopher")) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Println(strings.ToLowerSpecial(unicode.TurkishCase, "Örnek İş")) } package main import ( "fmt" "strings" ) func main() { // Compare this example to the Title example. fmt.Println(strings.ToTitle("her royal highness")) fmt.Println(strings.ToTitle("loud noises")) fmt.Println(strings.ToTitle("брат")) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Println(strings.ToTitleSpecial(unicode.TurkishCase, "dünyanın ilk borsa yapısı Aizonai kabul edilir")) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.ToUpper("Gopher")) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Println(strings.ToUpperSpecial(unicode.TurkishCase, "örnek iş")) } package main import ( "fmt" "strings" ) func main() { fmt.Printf("%s\n", strings.ToValidUTF8("abc", "\uFFFD")) fmt.Printf("%s\n", strings.ToValidUTF8("a\xffb\xC0\xAFc\xff", "")) fmt.Printf("%s\n", strings.ToValidUTF8("\xed\xa0\x80", "abc")) } package main import ( "fmt" "strings" ) func main() { fmt.Print(strings.Trim("¡¡¡Hello, Gophers!!!", "!¡")) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Print(strings.TrimFunc("¡¡¡Hello, Gophers!!!", func(r rune) bool { return !unicode.IsLetter(r) && !unicode.IsNumber(r) })) } package main import ( "fmt" "strings" ) func main() { fmt.Print(strings.TrimLeft("¡¡¡Hello, Gophers!!!", "!¡")) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Print(strings.TrimLeftFunc("¡¡¡Hello, Gophers!!!", func(r rune) bool { return !unicode.IsLetter(r) && !unicode.IsNumber(r) })) } package main import ( "fmt" "strings" ) func main() { var s = "¡¡¡Hello, Gophers!!!" s = strings.TrimPrefix(s, "¡¡¡Hello, ") s = strings.TrimPrefix(s, "¡¡¡Howdy, ") fmt.Print(s) } package main import ( "fmt" "strings" ) func main() { fmt.Print(strings.TrimRight("¡¡¡Hello, Gophers!!!", "!¡")) } package main import ( "fmt" "strings" "unicode" ) func main() { fmt.Print(strings.TrimRightFunc("¡¡¡Hello, Gophers!!!", func(r rune) bool { return !unicode.IsLetter(r) && !unicode.IsNumber(r) })) } package main import ( "fmt" "strings" ) func main() { fmt.Println(strings.TrimSpace(" \t\n Hello, Gophers \n\t\r\n")) } package main import ( "fmt" "strings" ) func main() { var s = "¡¡¡Hello, Gophers!!!" s = strings.TrimSuffix(s, ", Gophers!!!") s = strings.TrimSuffix(s, ", Marmots!!!") fmt.Print(s) }
Package-Level Type Names (total 3)
/* sort by: | */
A Builder is used to efficiently build a string using [Builder.Write] methods. It minimizes memory copying. The zero value is ready to use. Do not copy a non-zero Builder. Cap returns the capacity of the builder's underlying byte slice. It is the total space allocated for the string being built and includes any bytes already written. Grow grows b's capacity, if necessary, to guarantee space for another n bytes. After Grow(n), at least n bytes can be written to b without another allocation. If n is negative, Grow panics. Len returns the number of accumulated bytes; b.Len() == len(b.String()). Reset resets the [Builder] to be empty. String returns the accumulated string. Write appends the contents of p to b's buffer. Write always returns len(p), nil. WriteByte appends the byte c to b's buffer. The returned error is always nil. WriteRune appends the UTF-8 encoding of Unicode code point r to b's buffer. It returns the length of r and a nil error. WriteString appends the contents of s to b's buffer. It returns the length of s and a nil error. *Builder : expvar.Var *Builder : fmt.Stringer *Builder : internal/bisect.Writer *Builder : io.ByteWriter *Builder : io.StringWriter *Builder : io.Writer
A Reader implements the [io.Reader], [io.ReaderAt], [io.ByteReader], [io.ByteScanner], [io.RuneReader], [io.RuneScanner], [io.Seeker], and [io.WriterTo] interfaces by reading from a string. The zero value for Reader operates like a Reader of an empty string. Len returns the number of bytes of the unread portion of the string. Read implements the [io.Reader] interface. ReadAt implements the [io.ReaderAt] interface. ReadByte implements the [io.ByteReader] interface. ReadRune implements the [io.RuneReader] interface. Reset resets the [Reader] to be reading from s. Seek implements the [io.Seeker] interface. Size returns the original length of the underlying string. Size is the number of bytes available for reading via [Reader.ReadAt]. The returned value is always the same and is not affected by calls to any other method. UnreadByte implements the [io.ByteScanner] interface. UnreadRune implements the [io.RuneScanner] interface. WriteTo implements the [io.WriterTo] interface. *Reader : compress/flate.Reader *Reader : image/jpeg.Reader *Reader : io.ByteReader *Reader : io.ByteScanner *Reader : io.Reader *Reader : io.ReaderAt *Reader : io.ReadSeeker *Reader : io.RuneReader *Reader : io.RuneScanner *Reader : io.Seeker *Reader : io.WriterTo func NewReader(s string) *Reader
Replacer replaces a list of strings with replacements. It is safe for concurrent use by multiple goroutines. Replace returns a copy of s with all replacements performed. WriteString writes s to w with all replacements performed. func NewReplacer(oldnew ...string) *Replacer
Package-Level Functions (total 57)
Clone returns a fresh copy of s. It guarantees to make a copy of s into a new allocation, which can be important when retaining only a small substring of a much larger string. Using Clone can help such programs use less memory. Of course, since using Clone makes a copy, overuse of Clone can make programs use more memory. Clone should typically be used only rarely, and only when profiling indicates that it is needed. For strings of length zero the string "" will be returned and no allocation is made.
Compare returns an integer comparing two strings lexicographically. The result will be 0 if a == b, -1 if a < b, and +1 if a > b. Use Compare when you need to perform a three-way comparison (with [slices.SortFunc], for example). It is usually clearer and always faster to use the built-in string comparison operators ==, <, >, and so on.
Contains reports whether substr is within s.
ContainsAny reports whether any Unicode code points in chars are within s.
ContainsFunc reports whether any Unicode code points r within s satisfy f(r).
ContainsRune reports whether the Unicode code point r is within s.
Count counts the number of non-overlapping instances of substr in s. If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
Cut slices s around the first instance of sep, returning the text before and after sep. The found result reports whether sep appears in s. If sep does not appear in s, cut returns s, "", false.
CutPrefix returns s without the provided leading prefix string and reports whether it found the prefix. If s doesn't start with prefix, CutPrefix returns s, false. If prefix is the empty string, CutPrefix returns s, true.
CutSuffix returns s without the provided ending suffix string and reports whether it found the suffix. If s doesn't end with suffix, CutSuffix returns s, false. If suffix is the empty string, CutSuffix returns s, true.
EqualFold reports whether s and t, interpreted as UTF-8 strings, are equal under simple Unicode case-folding, which is a more general form of case-insensitivity.
Fields splits the string s around each instance of one or more consecutive white space characters, as defined by [unicode.IsSpace], returning a slice of substrings of s or an empty slice if s contains only white space.
FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) and returns an array of slices of s. If all code points in s satisfy f(c) or the string is empty, an empty slice is returned. FieldsFunc makes no guarantees about the order in which it calls f(c) and assumes that f always returns the same value for a given c.
FieldsFuncSeq returns an iterator over substrings of s split around runs of Unicode code points satisfying f(c). The iterator yields the same strings that would be returned by FieldsFunc(s), but without constructing the slice.
FieldsSeq returns an iterator over substrings of s split around runs of whitespace characters, as defined by unicode.IsSpace. The iterator yields the same strings that would be returned by Fields(s), but without constructing the slice.
HasPrefix reports whether the string s begins with prefix.
HasSuffix reports whether the string s ends with suffix.
Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
IndexAny returns the index of the first instance of any Unicode code point from chars in s, or -1 if no Unicode code point from chars is present in s.
IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
IndexFunc returns the index into s of the first Unicode code point satisfying f(c), or -1 if none do.
IndexRune returns the index of the first instance of the Unicode code point r, or -1 if rune is not present in s. If r is [utf8.RuneError], it returns the first instance of any invalid UTF-8 byte sequence.
Join concatenates the elements of its first argument to create a single string. The separator string sep is placed between elements in the resulting string.
LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
LastIndexAny returns the index of the last instance of any Unicode code point from chars in s, or -1 if no Unicode code point from chars is present in s.
LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
LastIndexFunc returns the index into s of the last Unicode code point satisfying f(c), or -1 if none do.
Lines returns an iterator over the newline-terminated lines in the string s. The lines yielded by the iterator include their terminating newlines. If s is empty, the iterator yields no lines at all. If s does not end in a newline, the final yielded line will not end in a newline. It returns a single-use iterator.
Map returns a copy of the string s with all its characters modified according to the mapping function. If mapping returns a negative value, the character is dropped from the string with no replacement.
NewReader returns a new [Reader] reading from s. It is similar to [bytes.NewBufferString] but more efficient and non-writable.
NewReplacer returns a new [Replacer] from a list of old, new string pairs. Replacements are performed in the order they appear in the target string, without overlapping matches. The old string comparisons are done in argument order. NewReplacer panics if given an odd number of arguments.
Repeat returns a new string consisting of count copies of the string s. It panics if count is negative or if the result of (len(s) * count) overflows.
Replace returns a copy of the string s with the first n non-overlapping instances of old replaced by new. If old is empty, it matches at the beginning of the string and after each UTF-8 sequence, yielding up to k+1 replacements for a k-rune string. If n < 0, there is no limit on the number of replacements.
ReplaceAll returns a copy of the string s with all non-overlapping instances of old replaced by new. If old is empty, it matches at the beginning of the string and after each UTF-8 sequence, yielding up to k+1 replacements for a k-rune string.
Split slices s into all substrings separated by sep and returns a slice of the substrings between those separators. If s does not contain sep and sep is not empty, Split returns a slice of length 1 whose only element is s. If sep is empty, Split splits after each UTF-8 sequence. If both s and sep are empty, Split returns an empty slice. It is equivalent to [SplitN] with a count of -1. To split around the first instance of a separator, see [Cut].
SplitAfter slices s into all substrings after each instance of sep and returns a slice of those substrings. If s does not contain sep and sep is not empty, SplitAfter returns a slice of length 1 whose only element is s. If sep is empty, SplitAfter splits after each UTF-8 sequence. If both s and sep are empty, SplitAfter returns an empty slice. It is equivalent to [SplitAfterN] with a count of -1.
SplitAfterN slices s into substrings after each instance of sep and returns a slice of those substrings. The count determines the number of substrings to return: - n > 0: at most n substrings; the last substring will be the unsplit remainder; - n == 0: the result is nil (zero substrings); - n < 0: all substrings. Edge cases for s and sep (for example, empty strings) are handled as described in the documentation for [SplitAfter].
SplitAfterSeq returns an iterator over substrings of s split after each instance of sep. The iterator yields the same strings that would be returned by SplitAfter(s, sep), but without constructing the slice. It returns a single-use iterator.
SplitN slices s into substrings separated by sep and returns a slice of the substrings between those separators. The count determines the number of substrings to return: - n > 0: at most n substrings; the last substring will be the unsplit remainder; - n == 0: the result is nil (zero substrings); - n < 0: all substrings. Edge cases for s and sep (for example, empty strings) are handled as described in the documentation for [Split]. To split around the first instance of a separator, see [Cut].
SplitSeq returns an iterator over all substrings of s separated by sep. The iterator yields the same strings that would be returned by Split(s, sep), but without constructing the slice. It returns a single-use iterator.
Title returns a copy of the string s with all Unicode letters that begin words mapped to their Unicode title case. Deprecated: The rule Title uses for word boundaries does not handle Unicode punctuation properly. Use golang.org/x/text/cases instead.
ToLower returns s with all Unicode letters mapped to their lower case.
ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their lower case using the case mapping specified by c.
ToTitle returns a copy of the string s with all Unicode letters mapped to their Unicode title case.
ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their Unicode title case, giving priority to the special casing rules.
ToUpper returns s with all Unicode letters mapped to their upper case.
ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their upper case using the case mapping specified by c.
ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences replaced by the replacement string, which may be empty.
Trim returns a slice of the string s with all leading and trailing Unicode code points contained in cutset removed.
TrimFunc returns a slice of the string s with all leading and trailing Unicode code points c satisfying f(c) removed.
TrimLeft returns a slice of the string s with all leading Unicode code points contained in cutset removed. To remove a prefix, use [TrimPrefix] instead.
TrimLeftFunc returns a slice of the string s with all leading Unicode code points c satisfying f(c) removed.
TrimPrefix returns s without the provided leading prefix string. If s doesn't start with prefix, s is returned unchanged.
TrimRight returns a slice of the string s, with all trailing Unicode code points contained in cutset removed. To remove a suffix, use [TrimSuffix] instead.
TrimRightFunc returns a slice of the string s with all trailing Unicode code points c satisfying f(c) removed.
TrimSpace returns a slice of the string s, with all leading and trailing white space removed, as defined by Unicode.
TrimSuffix returns s without the provided trailing suffix string. If s doesn't end with suffix, s is returned unchanged.