Source File
deflatefast.go
Belonging Package
compress/flate
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import
// This encoding algorithm, which prioritizes speed over output size, is
// based on Snappy's LZ77-style encoder: github.com/golang/snappy
const (
tableBits = 14 // Bits used in the table.
tableSize = 1 << tableBits // Size of the table.
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
// Reset the buffer offset when reaching this.
// Offsets are stored between blocks as int32 values.
// Since the offset we are checking against is at the beginning
// of the buffer, we need to subtract the current and input
// buffer to not risk overflowing the int32.
bufferReset = math.MaxInt32 - maxStoreBlockSize*2
)
func load32( []byte, int32) uint32 {
= [ : +4 : len()] // Help the compiler eliminate bounds checks on the next line.
return uint32([0]) | uint32([1])<<8 | uint32([2])<<16 | uint32([3])<<24
}
func load64( []byte, int32) uint64 {
= [ : +8 : len()] // Help the compiler eliminate bounds checks on the next line.
return uint64([0]) | uint64([1])<<8 | uint64([2])<<16 | uint64([3])<<24 |
uint64([4])<<32 | uint64([5])<<40 | uint64([6])<<48 | uint64([7])<<56
}
func hash( uint32) uint32 {
return ( * 0x1e35a7bd) >> tableShift
}
// These constants are defined by the Snappy implementation so that its
// assembly implementation can fast-path some 16-bytes-at-a-time copies. They
// aren't necessary in the pure Go implementation, as we don't use those same
// optimizations, but using the same thresholds doesn't really hurt.
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
type tableEntry struct {
val uint32 // Value at destination
offset int32
}
// deflateFast maintains the table for matches,
// and the previous byte block for cross block matching.
type deflateFast struct {
table [tableSize]tableEntry
prev []byte // Previous block, zero length if unknown.
cur int32 // Current match offset.
}
func newDeflateFast() *deflateFast {
return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}
}
// encode encodes a block given in src and appends tokens
// to dst and returns the result.
func ( *deflateFast) ( []token, []byte) []token {
// Ensure that e.cur doesn't wrap.
if .cur >= bufferReset {
.shiftOffsets()
}
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len() < minNonLiteralBlockSize {
.cur += maxStoreBlockSize
.prev = .prev[:0]
return emitLiteral(, )
}
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
:= int32(len() - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
:= int32(0)
:= int32(0)
:= load32(, )
:= hash()
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
:= int32(32)
:=
var tableEntry
for {
=
:= >> 5
= +
+=
if > {
goto
}
= .table[&tableMask]
:= load32(, )
.table[&tableMask] = tableEntry{offset: + .cur, val: }
= hash()
:= - (.offset - .cur)
if > maxMatchOffset || != .val {
// Out of range or not matched.
=
continue
}
break
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
= emitLiteral(, [:])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
+= 4
:= .offset - .cur + 4
:= .matchLen(, , )
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
= append(, matchToken(uint32(+4-baseMatchLength), uint32(--baseMatchOffset)))
+=
=
if >= {
goto
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
:= load64(, -1)
:= hash(uint32())
.table[&tableMask] = tableEntry{offset: .cur + - 1, val: uint32()}
>>= 8
:= hash(uint32())
= .table[&tableMask]
.table[&tableMask] = tableEntry{offset: .cur + , val: uint32()}
:= - (.offset - .cur)
if > maxMatchOffset || uint32() != .val {
= uint32( >> 8)
= hash()
++
break
}
}
}
:
if int() < len() {
= emitLiteral(, [:])
}
.cur += int32(len())
.prev = .prev[:len()]
copy(.prev, )
return
}
func emitLiteral( []token, []byte) []token {
for , := range {
= append(, literalToken(uint32()))
}
return
}
// matchLen returns the match length between src[s:] and src[t:].
// t can be negative to indicate the match is starting in e.prev.
// We assume that src[s-4:s] and src[t-4:t] already match.
func ( *deflateFast) (, int32, []byte) int32 {
:= int() + maxMatchLength - 4
if > len() {
= len()
}
// If we are inside the current block
if >= 0 {
:= [:]
:= [:]
= [:len()]
// Extend the match to be as long as possible.
for := range {
if [] != [] {
return int32()
}
}
return int32(len())
}
// We found a match in the previous block.
:= int32(len(.prev)) +
if < 0 {
return 0
}
// Extend the match to be as long as possible.
:= [:]
:= .prev[:]
if len() > len() {
= [:len()]
}
= [:len()]
for := range {
if [] != [] {
return int32()
}
}
// If we reached our limit, we matched everything we are
// allowed to in the previous block and we return.
:= int32(len())
if int(+) == {
return
}
// Continue looking for more matches in the current block.
= [+ : ]
= [:len()]
for := range {
if [] != [] {
return int32() +
}
}
return int32(len()) +
}
// Reset resets the encoding history.
// This ensures that no matches are made to the previous block.
func ( *deflateFast) () {
.prev = .prev[:0]
// Bump the offset, so all matches will fail distance check.
// Nothing should be >= e.cur in the table.
.cur += maxMatchOffset
// Protect against e.cur wraparound.
if .cur >= bufferReset {
.shiftOffsets()
}
}
// shiftOffsets will shift down all match offset.
// This is only called in rare situations to prevent integer overflow.
//
// See https://golang.org/issue/18636 and https://github.com/golang/go/issues/34121.
func ( *deflateFast) () {
if len(.prev) == 0 {
// We have no history; just clear the table.
clear(.table[:])
.cur = maxMatchOffset + 1
return
}
// Shift down everything in the table that isn't already too far away.
for := range .table[:] {
:= .table[].offset - .cur + maxMatchOffset + 1
if < 0 {
// We want to reset e.cur to maxMatchOffset + 1, so we need to shift
// all table entries down by (e.cur - (maxMatchOffset + 1)).
// Because we ignore matches > maxMatchOffset, we can cap
// any negative offsets at 0.
= 0
}
.table[].offset =
}
.cur = maxMatchOffset + 1
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |