// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ed25519 implements the Ed25519 signature algorithm. See // https://ed25519.cr.yp.to/. // // These functions are also compatible with the “Ed25519” function defined in // RFC 8032. However, unlike RFC 8032's formulation, this package's private key // representation includes a public key suffix to make multiple signing // operations with the same key more efficient. This package refers to the RFC // 8032 private key as the “seed”. // // Operations involving private keys are implemented using constant-time // algorithms.
package ed25519 import ( cryptorand ) const ( // PublicKeySize is the size, in bytes, of public keys as used in this package. PublicKeySize = 32 // PrivateKeySize is the size, in bytes, of private keys as used in this package. PrivateKeySize = 64 // SignatureSize is the size, in bytes, of signatures generated and verified by this package. SignatureSize = 64 // SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032. SeedSize = 32 ) // PublicKey is the type of Ed25519 public keys. type PublicKey []byte // Any methods implemented on PublicKey might need to also be implemented on // PrivateKey, as the latter embeds the former and will expose its methods. // Equal reports whether pub and x have the same value. func ( PublicKey) ( crypto.PublicKey) bool { , := .(PublicKey) if ! { return false } return subtle.ConstantTimeCompare(, ) == 1 } // PrivateKey is the type of Ed25519 private keys. It implements [crypto.Signer]. type PrivateKey []byte // Public returns the [PublicKey] corresponding to priv. func ( PrivateKey) () crypto.PublicKey { := make([]byte, PublicKeySize) copy(, [32:]) return PublicKey() } // Equal reports whether priv and x have the same value. func ( PrivateKey) ( crypto.PrivateKey) bool { , := .(PrivateKey) if ! { return false } return subtle.ConstantTimeCompare(, ) == 1 } // Seed returns the private key seed corresponding to priv. It is provided for // interoperability with RFC 8032. RFC 8032's private keys correspond to seeds // in this package. func ( PrivateKey) () []byte { return append(make([]byte, 0, SeedSize), [:SeedSize]...) } // Sign signs the given message with priv. rand is ignored and can be nil. // // If opts.HashFunc() is [crypto.SHA512], the pre-hashed variant Ed25519ph is used // and message is expected to be a SHA-512 hash, otherwise opts.HashFunc() must // be [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two // passes over messages to be signed. // // A value of type [Options] can be used as opts, or crypto.Hash(0) or // crypto.SHA512 directly to select plain Ed25519 or Ed25519ph, respectively. func ( PrivateKey) ( io.Reader, []byte, crypto.SignerOpts) ( []byte, error) { // NewPrivateKey is very slow in FIPS mode because it performs a // Sign+Verify cycle per FIPS 140-3 IG 10.3.A. We should find a way to cache // it or attach it to the PrivateKey. , := ed25519.NewPrivateKey() if != nil { return nil, } := .HashFunc() := "" if , := .(*Options); { = .Context } switch { case == crypto.SHA512: // Ed25519ph return ed25519.SignPH(, , ) case == crypto.Hash(0) && != "": // Ed25519ctx if fips140only.Enabled { return nil, errors.New("crypto/ed25519: use of Ed25519ctx is not allowed in FIPS 140-only mode") } return ed25519.SignCtx(, , ) case == crypto.Hash(0): // Ed25519 return ed25519.Sign(, ), nil default: return nil, errors.New("ed25519: expected opts.HashFunc() zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)") } } // Options can be used with [PrivateKey.Sign] or [VerifyWithOptions] // to select Ed25519 variants. type Options struct { // Hash can be zero for regular Ed25519, or crypto.SHA512 for Ed25519ph. Hash crypto.Hash // Context, if not empty, selects Ed25519ctx or provides the context string // for Ed25519ph. It can be at most 255 bytes in length. Context string } // HashFunc returns o.Hash. func ( *Options) () crypto.Hash { return .Hash } // GenerateKey generates a public/private key pair using entropy from rand. // If rand is nil, [crypto/rand.Reader] will be used. // // The output of this function is deterministic, and equivalent to reading // [SeedSize] bytes from rand, and passing them to [NewKeyFromSeed]. func ( io.Reader) (PublicKey, PrivateKey, error) { if == nil { = cryptorand.Reader } := make([]byte, SeedSize) if , := io.ReadFull(, ); != nil { return nil, nil, } := NewKeyFromSeed() := .Public().(PublicKey) return , , nil } // NewKeyFromSeed calculates a private key from a seed. It will panic if // len(seed) is not [SeedSize]. This function is provided for interoperability // with RFC 8032. RFC 8032's private keys correspond to seeds in this // package. func ( []byte) PrivateKey { // Outline the function body so that the returned key can be stack-allocated. := make([]byte, PrivateKeySize) newKeyFromSeed(, ) return } func newKeyFromSeed(, []byte) { , := ed25519.NewPrivateKeyFromSeed() if != nil { // NewPrivateKeyFromSeed only returns an error if the seed length is incorrect. panic("ed25519: bad seed length: " + strconv.Itoa(len())) } copy(, .Bytes()) } // Sign signs the message with privateKey and returns a signature. It will // panic if len(privateKey) is not [PrivateKeySize]. func ( PrivateKey, []byte) []byte { // Outline the function body so that the returned signature can be // stack-allocated. := make([]byte, SignatureSize) sign(, , ) return } func sign( []byte, PrivateKey, []byte) { // NewPrivateKey is very slow in FIPS mode because it performs a // Sign+Verify cycle per FIPS 140-3 IG 10.3.A. We should find a way to cache // it or attach it to the PrivateKey. , := ed25519.NewPrivateKey() if != nil { panic("ed25519: bad private key: " + .Error()) } := ed25519.Sign(, ) copy(, ) } // Verify reports whether sig is a valid signature of message by publicKey. It // will panic if len(publicKey) is not [PublicKeySize]. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func ( PublicKey, , []byte) bool { return VerifyWithOptions(, , , &Options{Hash: crypto.Hash(0)}) == nil } // VerifyWithOptions reports whether sig is a valid signature of message by // publicKey. A valid signature is indicated by returning a nil error. It will // panic if len(publicKey) is not [PublicKeySize]. // // If opts.Hash is [crypto.SHA512], the pre-hashed variant Ed25519ph is used and // message is expected to be a SHA-512 hash, otherwise opts.Hash must be // [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two // passes over messages to be signed. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func ( PublicKey, , []byte, *Options) error { if := len(); != PublicKeySize { panic("ed25519: bad public key length: " + strconv.Itoa()) } , := ed25519.NewPublicKey() if != nil { return } switch { case .Hash == crypto.SHA512: // Ed25519ph return ed25519.VerifyPH(, , , .Context) case .Hash == crypto.Hash(0) && .Context != "": // Ed25519ctx if fips140only.Enabled { return errors.New("crypto/ed25519: use of Ed25519ctx is not allowed in FIPS 140-only mode") } return ed25519.VerifyCtx(, , , .Context) case .Hash == crypto.Hash(0): // Ed25519 return ed25519.Verify(, , ) default: return errors.New("ed25519: expected opts.Hash zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)") } }