// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ed25519 implements the Ed25519 signature algorithm. See // https://ed25519.cr.yp.to/. // // These functions are also compatible with the “Ed25519” function defined in // RFC 8032. However, unlike RFC 8032's formulation, this package's private key // representation includes a public key suffix to make multiple signing // operations with the same key more efficient. This package refers to the RFC // 8032 private key as the “seed”. // // Operations involving private keys are implemented using constant-time // algorithms.
package ed25519 import ( cryptorand ) const ( // PublicKeySize is the size, in bytes, of public keys as used in this package. PublicKeySize = 32 // PrivateKeySize is the size, in bytes, of private keys as used in this package. PrivateKeySize = 64 // SignatureSize is the size, in bytes, of signatures generated and verified by this package. SignatureSize = 64 // SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032. SeedSize = 32 ) // PublicKey is the type of Ed25519 public keys. type PublicKey []byte // Any methods implemented on PublicKey might need to also be implemented on // PrivateKey, as the latter embeds the former and will expose its methods. // Equal reports whether pub and x have the same value. func ( PublicKey) ( crypto.PublicKey) bool { , := .(PublicKey) if ! { return false } return subtle.ConstantTimeCompare(, ) == 1 } // PrivateKey is the type of Ed25519 private keys. It implements [crypto.Signer]. type PrivateKey []byte // Public returns the [PublicKey] corresponding to priv. func ( PrivateKey) () crypto.PublicKey { := make([]byte, PublicKeySize) copy(, [32:]) return PublicKey() } // Equal reports whether priv and x have the same value. func ( PrivateKey) ( crypto.PrivateKey) bool { , := .(PrivateKey) if ! { return false } return subtle.ConstantTimeCompare(, ) == 1 } // Seed returns the private key seed corresponding to priv. It is provided for // interoperability with RFC 8032. RFC 8032's private keys correspond to seeds // in this package. func ( PrivateKey) () []byte { return bytes.Clone([:SeedSize]) } // Sign signs the given message with priv. rand is ignored and can be nil. // // If opts.HashFunc() is [crypto.SHA512], the pre-hashed variant Ed25519ph is used // and message is expected to be a SHA-512 hash, otherwise opts.HashFunc() must // be [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two // passes over messages to be signed. // // A value of type [Options] can be used as opts, or crypto.Hash(0) or // crypto.SHA512 directly to select plain Ed25519 or Ed25519ph, respectively. func ( PrivateKey) ( io.Reader, []byte, crypto.SignerOpts) ( []byte, error) { := .HashFunc() := "" if , := .(*Options); { = .Context } switch { case == crypto.SHA512: // Ed25519ph if := len(); != sha512.Size { return nil, errors.New("ed25519: bad Ed25519ph message hash length: " + strconv.Itoa()) } if := len(); > 255 { return nil, errors.New("ed25519: bad Ed25519ph context length: " + strconv.Itoa()) } := make([]byte, SignatureSize) sign(, , , domPrefixPh, ) return , nil case == crypto.Hash(0) && != "": // Ed25519ctx if := len(); > 255 { return nil, errors.New("ed25519: bad Ed25519ctx context length: " + strconv.Itoa()) } := make([]byte, SignatureSize) sign(, , , domPrefixCtx, ) return , nil case == crypto.Hash(0): // Ed25519 return Sign(, ), nil default: return nil, errors.New("ed25519: expected opts.HashFunc() zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)") } } // Options can be used with [PrivateKey.Sign] or [VerifyWithOptions] // to select Ed25519 variants. type Options struct { // Hash can be zero for regular Ed25519, or crypto.SHA512 for Ed25519ph. Hash crypto.Hash // Context, if not empty, selects Ed25519ctx or provides the context string // for Ed25519ph. It can be at most 255 bytes in length. Context string } // HashFunc returns o.Hash. func ( *Options) () crypto.Hash { return .Hash } // GenerateKey generates a public/private key pair using entropy from rand. // If rand is nil, [crypto/rand.Reader] will be used. // // The output of this function is deterministic, and equivalent to reading // [SeedSize] bytes from rand, and passing them to [NewKeyFromSeed]. func ( io.Reader) (PublicKey, PrivateKey, error) { if == nil { = cryptorand.Reader } := make([]byte, SeedSize) if , := io.ReadFull(, ); != nil { return nil, nil, } := NewKeyFromSeed() := make([]byte, PublicKeySize) copy(, [32:]) return , , nil } // NewKeyFromSeed calculates a private key from a seed. It will panic if // len(seed) is not [SeedSize]. This function is provided for interoperability // with RFC 8032. RFC 8032's private keys correspond to seeds in this // package. func ( []byte) PrivateKey { // Outline the function body so that the returned key can be stack-allocated. := make([]byte, PrivateKeySize) newKeyFromSeed(, ) return } func newKeyFromSeed(, []byte) { if := len(); != SeedSize { panic("ed25519: bad seed length: " + strconv.Itoa()) } := sha512.Sum512() , := edwards25519.NewScalar().SetBytesWithClamping([:32]) if != nil { panic("ed25519: internal error: setting scalar failed") } := (&edwards25519.Point{}).ScalarBaseMult() := .Bytes() copy(, ) copy([32:], ) } // Sign signs the message with privateKey and returns a signature. It will // panic if len(privateKey) is not [PrivateKeySize]. func ( PrivateKey, []byte) []byte { // Outline the function body so that the returned signature can be // stack-allocated. := make([]byte, SignatureSize) sign(, , , domPrefixPure, "") return } // Domain separation prefixes used to disambiguate Ed25519/Ed25519ph/Ed25519ctx. // See RFC 8032, Section 2 and Section 5.1. const ( // domPrefixPure is empty for pure Ed25519. domPrefixPure = "" // domPrefixPh is dom2(phflag=1) for Ed25519ph. It must be followed by the // uint8-length prefixed context. domPrefixPh = "SigEd25519 no Ed25519 collisions\x01" // domPrefixCtx is dom2(phflag=0) for Ed25519ctx. It must be followed by the // uint8-length prefixed context. domPrefixCtx = "SigEd25519 no Ed25519 collisions\x00" ) func sign(, , []byte, , string) { if := len(); != PrivateKeySize { panic("ed25519: bad private key length: " + strconv.Itoa()) } , := [:SeedSize], [SeedSize:] := sha512.Sum512() , := edwards25519.NewScalar().SetBytesWithClamping([:32]) if != nil { panic("ed25519: internal error: setting scalar failed") } := [32:] := sha512.New() if != domPrefixPure { .Write([]byte()) .Write([]byte{byte(len())}) .Write([]byte()) } .Write() .Write() := make([]byte, 0, sha512.Size) = .Sum() , := edwards25519.NewScalar().SetUniformBytes() if != nil { panic("ed25519: internal error: setting scalar failed") } := (&edwards25519.Point{}).ScalarBaseMult() := sha512.New() if != domPrefixPure { .Write([]byte()) .Write([]byte{byte(len())}) .Write([]byte()) } .Write(.Bytes()) .Write() .Write() := make([]byte, 0, sha512.Size) = .Sum() , := edwards25519.NewScalar().SetUniformBytes() if != nil { panic("ed25519: internal error: setting scalar failed") } := edwards25519.NewScalar().MultiplyAdd(, , ) copy([:32], .Bytes()) copy([32:], .Bytes()) } // Verify reports whether sig is a valid signature of message by publicKey. It // will panic if len(publicKey) is not [PublicKeySize]. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func ( PublicKey, , []byte) bool { return verify(, , , domPrefixPure, "") } // VerifyWithOptions reports whether sig is a valid signature of message by // publicKey. A valid signature is indicated by returning a nil error. It will // panic if len(publicKey) is not [PublicKeySize]. // // If opts.Hash is [crypto.SHA512], the pre-hashed variant Ed25519ph is used and // message is expected to be a SHA-512 hash, otherwise opts.Hash must be // [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two // passes over messages to be signed. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func ( PublicKey, , []byte, *Options) error { switch { case .Hash == crypto.SHA512: // Ed25519ph if := len(); != sha512.Size { return errors.New("ed25519: bad Ed25519ph message hash length: " + strconv.Itoa()) } if := len(.Context); > 255 { return errors.New("ed25519: bad Ed25519ph context length: " + strconv.Itoa()) } if !verify(, , , domPrefixPh, .Context) { return errors.New("ed25519: invalid signature") } return nil case .Hash == crypto.Hash(0) && .Context != "": // Ed25519ctx if := len(.Context); > 255 { return errors.New("ed25519: bad Ed25519ctx context length: " + strconv.Itoa()) } if !verify(, , , domPrefixCtx, .Context) { return errors.New("ed25519: invalid signature") } return nil case .Hash == crypto.Hash(0): // Ed25519 if !verify(, , , domPrefixPure, "") { return errors.New("ed25519: invalid signature") } return nil default: return errors.New("ed25519: expected opts.Hash zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)") } } func verify( PublicKey, , []byte, , string) bool { if := len(); != PublicKeySize { panic("ed25519: bad public key length: " + strconv.Itoa()) } if len() != SignatureSize || [63]&224 != 0 { return false } , := (&edwards25519.Point{}).SetBytes() if != nil { return false } := sha512.New() if != domPrefixPure { .Write([]byte()) .Write([]byte{byte(len())}) .Write([]byte()) } .Write([:32]) .Write() .Write() := make([]byte, 0, sha512.Size) = .Sum() , := edwards25519.NewScalar().SetUniformBytes() if != nil { panic("ed25519: internal error: setting scalar failed") } , := edwards25519.NewScalar().SetCanonicalBytes([32:]) if != nil { return false } // [S]B = R + [k]A --> [k](-A) + [S]B = R := (&edwards25519.Point{}).Negate() := (&edwards25519.Point{}).VarTimeDoubleScalarBaseMult(, , ) return bytes.Equal([:32], .Bytes()) }