Source File
hmac.go
Belonging Package
crypto/hmac
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package hmac implements the Keyed-Hash Message Authentication Code (HMAC) as
defined in U.S. Federal Information Processing Standards Publication 198.
An HMAC is a cryptographic hash that uses a key to sign a message.
The receiver verifies the hash by recomputing it using the same key.
Receivers should be careful to use Equal to compare MACs in order to avoid
timing side-channels:
// ValidMAC reports whether messageMAC is a valid HMAC tag for message.
func ValidMAC(message, messageMAC, key []byte) bool {
mac := hmac.New(sha256.New, key)
mac.Write(message)
expectedMAC := mac.Sum(nil)
return hmac.Equal(messageMAC, expectedMAC)
}
*/
package hmac
import (
)
// FIPS 198-1:
// https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
// key is zero padded to the block size of the hash function
// ipad = 0x36 byte repeated for key length
// opad = 0x5c byte repeated for key length
// hmac = H([key ^ opad] H([key ^ ipad] text))
// marshalable is the combination of encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler. Their method definitions are repeated here to
// avoid a dependency on the encoding package.
type marshalable interface {
MarshalBinary() ([]byte, error)
UnmarshalBinary([]byte) error
}
type hmac struct {
opad, ipad []byte
outer, inner hash.Hash
// If marshaled is true, then opad and ipad do not contain a padded
// copy of the key, but rather the marshaled state of outer/inner after
// opad/ipad has been fed into it.
marshaled bool
}
func ( *hmac) ( []byte) []byte {
:= len()
= .inner.Sum()
if .marshaled {
if := .outer.(marshalable).UnmarshalBinary(.opad); != nil {
panic()
}
} else {
.outer.Reset()
.outer.Write(.opad)
}
.outer.Write([:])
return .outer.Sum([:])
}
func ( *hmac) ( []byte) ( int, error) {
return .inner.Write()
}
func ( *hmac) () int { return .outer.Size() }
func ( *hmac) () int { return .inner.BlockSize() }
func ( *hmac) () {
if .marshaled {
if := .inner.(marshalable).UnmarshalBinary(.ipad); != nil {
panic()
}
return
}
.inner.Reset()
.inner.Write(.ipad)
// If the underlying hash is marshalable, we can save some time by
// saving a copy of the hash state now, and restoring it on future
// calls to Reset and Sum instead of writing ipad/opad every time.
//
// If either hash is unmarshalable for whatever reason,
// it's safe to bail out here.
, := .inner.(marshalable)
if ! {
return
}
, := .outer.(marshalable)
if ! {
return
}
, := .MarshalBinary()
if != nil {
return
}
.outer.Reset()
.outer.Write(.opad)
, := .MarshalBinary()
if != nil {
return
}
// Marshaling succeeded; save the marshaled state for later
.ipad =
.opad =
.marshaled = true
}
// New returns a new HMAC hash using the given [hash.Hash] type and key.
// New functions like sha256.New from [crypto/sha256] can be used as h.
// h must return a new Hash every time it is called.
// Note that unlike other hash implementations in the standard library,
// the returned Hash does not implement [encoding.BinaryMarshaler]
// or [encoding.BinaryUnmarshaler].
func ( func() hash.Hash, []byte) hash.Hash {
if boring.Enabled {
:= boring.NewHMAC(, )
if != nil {
return
}
// BoringCrypto did not recognize h, so fall through to standard Go code.
}
:= new(hmac)
.outer = ()
.inner = ()
:= true
func() {
defer func() {
// The comparison might panic if the underlying types are not comparable.
_ = recover()
}()
if .outer == .inner {
= false
}
}()
if ! {
panic("crypto/hmac: hash generation function does not produce unique values")
}
:= .inner.BlockSize()
.ipad = make([]byte, )
.opad = make([]byte, )
if len() > {
// If key is too big, hash it.
.outer.Write()
= .outer.Sum(nil)
}
copy(.ipad, )
copy(.opad, )
for := range .ipad {
.ipad[] ^= 0x36
}
for := range .opad {
.opad[] ^= 0x5c
}
.inner.Write(.ipad)
return
}
// Equal compares two MACs for equality without leaking timing information.
func (, []byte) bool {
// We don't have to be constant time if the lengths of the MACs are
// different as that suggests that a completely different hash function
// was used.
return subtle.ConstantTimeCompare(, ) == 1
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |