// Copyright 2024 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package rsaimport ()typePublicKeystruct { N *bigmod.Modulus E int}// Size returns the modulus size in bytes. Raw signatures and ciphertexts// for or by this public key will have the same size.func ( *PublicKey) () int {return (.N.BitLen() + 7) / 8}typePrivateKeystruct {// pub has already been checked with checkPublicKey. pub PublicKey d *bigmod.Nat// The following values are not set for deprecated multi-prime keys. // // Since they are always set for keys in FIPS mode, for SP 800-56B Rev. 2 // purposes we always use the Chinese Remainder Theorem (CRT) format. p, q *bigmod.Modulus// p × q = n// dP and dQ are used as exponents, so we store them as big-endian byte // slices to be passed to [bigmod.Nat.Exp]. dP []byte// d mod (p - 1) dQ []byte// d mod (q - 1) qInv *bigmod.Nat// qInv = q⁻¹ mod p// fipsApproved is false if this key does not comply with FIPS 186-5 or // SP 800-56B Rev. 2. fipsApproved bool}func ( *PrivateKey) () *PublicKey {return &.pub}// NewPrivateKey creates a new RSA private key from the given parameters.//// All values are in big-endian byte slice format, and may have leading zeros// or be shorter if leading zeroes were trimmed.func ( []byte, int, , , []byte) (*PrivateKey, error) { , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewNat().SetBytes(, )if != nil {returnnil, }returnnewPrivateKey(, , , , )}func newPrivateKey( *bigmod.Modulus, int, *bigmod.Nat, , *bigmod.Modulus) (*PrivateKey, error) { := .Nat().SubOne() , := bigmod.NewModulus(.Bytes())if != nil {returnnil, } := bigmod.NewNat().Mod(, ).Bytes() := .Nat().SubOne() , := bigmod.NewModulus(.Bytes())if != nil {returnnil, } := bigmod.NewNat().Mod(, ).Bytes()// Constant-time modular inversion with prime modulus by Fermat's Little // Theorem: qInv = q⁻¹ mod p = q^(p-2) mod p.if .Nat().IsOdd() == 0 {// [bigmod.Nat.Exp] requires an odd modulus.returnnil, errors.New("crypto/rsa: p is even") } := .Nat().SubOne().SubOne().Bytes() := bigmod.NewNat().Mod(.Nat(), ) .Exp(, , ) := &PrivateKey{pub: PublicKey{N: , E: , },d: , p: , q: ,dP: , dQ: , qInv: , }if := checkPrivateKey(); != nil {returnnil, }return , nil}// NewPrivateKeyWithPrecomputation creates a new RSA private key from the given// parameters, which include precomputed CRT values.func ( []byte, int, , , , , , []byte) (*PrivateKey, error) { , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewNat().SetBytes(, )if != nil {returnnil, } , := bigmod.NewNat().SetBytes(, )if != nil {returnnil, } := &PrivateKey{pub: PublicKey{N: , E: , },d: , p: , q: ,dP: , dQ: , qInv: , }if := checkPrivateKey(); != nil {returnnil, }return , nil}// NewPrivateKeyWithoutCRT creates a new RSA private key from the given parameters.//// This is meant for deprecated multi-prime keys, and is not FIPS 140 compliant.func ( []byte, int, []byte) (*PrivateKey, error) { , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewNat().SetBytes(, )if != nil {returnnil, } := &PrivateKey{pub: PublicKey{N: , E: , },d: , }if := checkPrivateKey(); != nil {returnnil, }return , nil}// Export returns the key parameters in big-endian byte slice format.//// P, Q, dP, dQ, and qInv may be nil if the key was created with// NewPrivateKeyWithoutCRT.func ( *PrivateKey) () ( []byte, int, , , , , , []byte) { = .pub.N.Nat().Bytes(.pub.N) = .pub.E = .d.Bytes(.pub.N)if .dP == nil {return } = .p.Nat().Bytes(.p) = .q.Nat().Bytes(.q) = bytes.Clone(.dP) = bytes.Clone(.dQ) = .qInv.Bytes(.p)return}// checkPrivateKey is called by the NewPrivateKey and GenerateKey functions, and// is allowed to modify priv.fipsApproved.func checkPrivateKey( *PrivateKey) error { .fipsApproved = trueif , := checkPublicKey(&.pub); != nil {return } elseif ! { .fipsApproved = false }if .dP == nil {// Legacy and deprecated multi-prime keys. .fipsApproved = falsereturnnil } := .pub.N := .p := .q// FIPS 186-5, Section 5.1 requires "that p and q be of the same bit length."if .BitLen() != .BitLen() { .fipsApproved = false }// Check that pq ≡ 1 mod N (and that p < N and q < N). := bigmod.NewNat().ExpandFor()if , := .SetBytes(.Nat().Bytes(), ); != nil {returnerrors.New("crypto/rsa: invalid prime") } := bigmod.NewNat().ExpandFor()if , := .SetBytes(.Nat().Bytes(), ); != nil {returnerrors.New("crypto/rsa: invalid prime") }if .Mul(, ).IsZero() != 1 {returnerrors.New("crypto/rsa: p * q != n") }// Check that de ≡ 1 mod p-1, and de ≡ 1 mod q-1. // // This implies that e is coprime to each p-1 as e has a multiplicative // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = exponent(ℤ/nℤ). // It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 mod p. Thus a^de ≡ a // mod n for all a coprime to n, as required. // // This checks dP, dQ, and e. We don't check d because it is not actually // used in the RSA private key operation. , := bigmod.NewModulus(.Nat().SubOne().Bytes())if != nil {returnerrors.New("crypto/rsa: invalid prime") } , := bigmod.NewNat().SetBytes(.dP, )if != nil {returnerrors.New("crypto/rsa: invalid CRT exponent") } := bigmod.NewNat() .SetUint(uint(.pub.E)).ExpandFor() .Mul(, )if .IsOne() != 1 {returnerrors.New("crypto/rsa: invalid CRT exponent") } , := bigmod.NewModulus(.Nat().SubOne().Bytes())if != nil {returnerrors.New("crypto/rsa: invalid prime") } , := bigmod.NewNat().SetBytes(.dQ, )if != nil {returnerrors.New("crypto/rsa: invalid CRT exponent") } .SetUint(uint(.pub.E)).ExpandFor() .Mul(, )if .IsOne() != 1 {returnerrors.New("crypto/rsa: invalid CRT exponent") }// Check that qInv * q ≡ 1 mod p. , := bigmod.NewNat().SetOverflowingBytes(.Nat().Bytes(), )if != nil {// q >= 2^⌈log2(p)⌉ = bigmod.NewNat().Mod(.Nat(), ) }if .Mul(.qInv, ).IsOne() != 1 {returnerrors.New("crypto/rsa: invalid CRT coefficient") }// Check that |p - q| > 2^(nlen/2 - 100). // // If p and q are very close to each other, then N=pq can be trivially // factored using Fermat's factorization method. Broken RSA implementations // do generate such keys. See Hanno Böck, Fermat Factorization in the Wild, // https://eprint.iacr.org/2023/026.pdf. := bigmod.NewNat()if , := bigmod.NewNat().SetBytes(.Nat().Bytes(), ); != nil {// q > p , := bigmod.NewNat().SetBytes(.Nat().Bytes(), )if != nil {returnerrors.New("crypto/rsa: p == q") }// diff = 0 - p mod q = q - p .ExpandFor().Sub(, ) } else {// p > q // diff = 0 - q mod p = p - q .ExpandFor().Sub(, ) }// A tiny bit of leakage is acceptable because it's not adaptive, an // attacker only learns the magnitude of p - q.if .BitLenVarTime() <= .BitLen()/2-100 {returnerrors.New("crypto/rsa: |p - q| too small") }// Check that d > 2^(nlen/2). // // See section 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf // for more details about attacks on small d values. // // Likewise, the leakage of the magnitude of d is not adaptive.if .d.BitLenVarTime() <= .BitLen()/2 {returnerrors.New("crypto/rsa: d too small") }// If the key is still in scope for FIPS mode, perform a Pairwise // Consistency Test.if .fipsApproved {if := fips140.PCT("RSA sign and verify PCT", func() error { := []byte{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10,0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, } , := signPKCS1v15(, "SHA-256", )if != nil {return }returnverifyPKCS1v15(.PublicKey(), "SHA-256", , ) }); != nil {return } }returnnil}func checkPublicKey( *PublicKey) ( bool, error) { = trueif .N == nil {returnfalse, errors.New("crypto/rsa: missing public modulus") }if .N.Nat().IsOdd() == 0 {returnfalse, errors.New("crypto/rsa: public modulus is even") }// FIPS 186-5, Section 5.1: "This standard specifies the use of a modulus // whose bit length is an even integer and greater than or equal to 2048 // bits."if .N.BitLen() < 2048 { = false }if .N.BitLen()%2 == 1 { = false }if .E < 2 {returnfalse, errors.New("crypto/rsa: public exponent too small or negative") }// e needs to be coprime with p-1 and q-1, since it must be invertible // modulo λ(pq). Since p and q are prime, this means e needs to be odd.if .E&1 == 0 {returnfalse, errors.New("crypto/rsa: public exponent is even") }// FIPS 186-5, Section 5.5(e): "The exponent e shall be an odd, positive // integer such that 2¹⁶ < e < 2²⁵⁶."if .E <= 1<<16 { = false }// We require pub.E to fit into a 32-bit integer so that we // do not have different behavior depending on whether // int is 32 or 64 bits. See also // https://www.imperialviolet.org/2012/03/16/rsae.html.if .E > 1<<31-1 {returnfalse, errors.New("crypto/rsa: public exponent too large") }return , nil}// Encrypt performs the RSA public key operation.func ( *PublicKey, []byte) ([]byte, error) {fips140.RecordNonApproved()if , := checkPublicKey(); != nil {returnnil, }returnencrypt(, )}func encrypt( *PublicKey, []byte) ([]byte, error) { , := bigmod.NewNat().SetBytes(, .N)if != nil {returnnil, }returnbigmod.NewNat().ExpShortVarTime(, uint(.E), .N).Bytes(.N), nil}varErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size")varErrDecryption = errors.New("crypto/rsa: decryption error")varErrVerification = errors.New("crypto/rsa: verification error")const withCheck = trueconst noCheck = false// DecryptWithoutCheck performs the RSA private key operation.func ( *PrivateKey, []byte) ([]byte, error) {fips140.RecordNonApproved()returndecrypt(, , noCheck)}// DecryptWithCheck performs the RSA private key operation and checks the// result to defend against errors in the CRT computation.func ( *PrivateKey, []byte) ([]byte, error) {fips140.RecordNonApproved()returndecrypt(, , withCheck)}// decrypt performs an RSA decryption of ciphertext into out. If check is true,// m^e is calculated and compared with ciphertext, in order to defend against// errors in the CRT computation.func decrypt( *PrivateKey, []byte, bool) ([]byte, error) {if !.fipsApproved {fips140.RecordNonApproved() }var *bigmod.Nat , := .pub.N, .pub.E , := bigmod.NewNat().SetBytes(, )if != nil {returnnil, ErrDecryption }if .dP == nil {// Legacy codepath for deprecated multi-prime keys.fips140.RecordNonApproved() = bigmod.NewNat().Exp(, .d.Bytes(), ) } else { , := .p, .q := bigmod.NewNat()// m = c ^ Dp mod p = bigmod.NewNat().Exp(.Mod(, ), .dP, )// m2 = c ^ Dq mod q := bigmod.NewNat().Exp(.Mod(, ), .dQ, )// m = m - m2 mod p .Sub(.Mod(, ), )// m = m * Qinv mod p .Mul(.qInv, )// m = m * q mod N .ExpandFor().Mul(.Mod(.Nat(), ), )// m = m + m2 mod N .Add(.ExpandFor(), ) }if { := bigmod.NewNat().ExpShortVarTime(, uint(), )if .Equal() != 1 {returnnil, ErrDecryption } }return .Bytes(), nil}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.