// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

/*
 * Line tables
 */

package gosym

import (
	
	
	
	
)

// version of the pclntab
type version int

const (
	verUnknown version = iota
	ver11
	ver12
	ver116
	ver118
	ver120
)

// A LineTable is a data structure mapping program counters to line numbers.
//
// In Go 1.1 and earlier, each function (represented by a [Func]) had its own LineTable,
// and the line number corresponded to a numbering of all source lines in the
// program, across all files. That absolute line number would then have to be
// converted separately to a file name and line number within the file.
//
// In Go 1.2, the format of the data changed so that there is a single LineTable
// for the entire program, shared by all Funcs, and there are no absolute line
// numbers, just line numbers within specific files.
//
// For the most part, LineTable's methods should be treated as an internal
// detail of the package; callers should use the methods on [Table] instead.
type LineTable struct {
	Data []byte
	PC   uint64
	Line int

	// This mutex is used to keep parsing of pclntab synchronous.
	mu sync.Mutex

	// Contains the version of the pclntab section.
	version version

	// Go 1.2/1.16/1.18 state
	binary      binary.ByteOrder
	quantum     uint32
	ptrsize     uint32
	textStart   uint64 // address of runtime.text symbol (1.18+)
	funcnametab []byte
	cutab       []byte
	funcdata    []byte
	functab     []byte
	nfunctab    uint32
	filetab     []byte
	pctab       []byte // points to the pctables.
	nfiletab    uint32
	funcNames   map[uint32]string // cache the function names
	strings     map[uint32]string // interned substrings of Data, keyed by offset
	// fileMap varies depending on the version of the object file.
	// For ver12, it maps the name to the index in the file table.
	// For ver116, it maps the name to the offset in filetab.
	fileMap map[string]uint32
}

// NOTE(rsc): This is wrong for GOARCH=arm, which uses a quantum of 4,
// but we have no idea whether we're using arm or not. This only
// matters in the old (pre-Go 1.2) symbol table format, so it's not worth
// fixing.
const oldQuantum = 1

func ( *LineTable) ( uint64,  int) ( []byte,  uint64,  int) {
	// The PC/line table can be thought of as a sequence of
	//  <pc update>* <line update>
	// batches. Each update batch results in a (pc, line) pair,
	// where line applies to every PC from pc up to but not
	// including the pc of the next pair.
	//
	// Here we process each update individually, which simplifies
	// the code, but makes the corner cases more confusing.
	, ,  = .Data, .PC, .Line
	for  <=  &&  !=  && len() > 0 {
		 := [0]
		 = [1:]
		switch {
		case  == 0:
			if len() < 4 {
				 = [0:0]
				break
			}
			 := binary.BigEndian.Uint32()
			 = [4:]
			 += int()
		case  <= 64:
			 += int()
		case  <= 128:
			 -= int( - 64)
		default:
			 += oldQuantum * uint64(-128)
			continue
		}
		 += oldQuantum
	}
	return , , 
}

func ( *LineTable) ( uint64) *LineTable {
	, ,  := .parse(, -1)
	return &LineTable{Data: , PC: , Line: }
}

// PCToLine returns the line number for the given program counter.
//
// Deprecated: Use Table's PCToLine method instead.
func ( *LineTable) ( uint64) int {
	if .isGo12() {
		return .go12PCToLine()
	}
	, ,  := .parse(, -1)
	return 
}

// LineToPC returns the program counter for the given line number,
// considering only program counters before maxpc.
//
// Deprecated: Use Table's LineToPC method instead.
func ( *LineTable) ( int,  uint64) uint64 {
	if .isGo12() {
		return 0
	}
	, ,  := .parse(, )
	if  !=  {
		return 0
	}
	// Subtract quantum from PC to account for post-line increment
	return  - oldQuantum
}

// NewLineTable returns a new PC/line table
// corresponding to the encoded data.
// Text must be the start address of the
// corresponding text segment.
func ( []byte,  uint64) *LineTable {
	return &LineTable{Data: , PC: , Line: 0, funcNames: make(map[uint32]string), strings: make(map[uint32]string)}
}

// Go 1.2 symbol table format.
// See golang.org/s/go12symtab.
//
// A general note about the methods here: rather than try to avoid
// index out of bounds errors, we trust Go to detect them, and then
// we recover from the panics and treat them as indicative of a malformed
// or incomplete table.
//
// The methods called by symtab.go, which begin with "go12" prefixes,
// are expected to have that recovery logic.

// isGo12 reports whether this is a Go 1.2 (or later) symbol table.
func ( *LineTable) () bool {
	.parsePclnTab()
	return .version >= ver12
}

const (
	go12magic  = 0xfffffffb
	go116magic = 0xfffffffa
	go118magic = 0xfffffff0
	go120magic = 0xfffffff1
)

// uintptr returns the pointer-sized value encoded at b.
// The pointer size is dictated by the table being read.
func ( *LineTable) ( []byte) uint64 {
	if .ptrsize == 4 {
		return uint64(.binary.Uint32())
	}
	return .binary.Uint64()
}

// parsePclnTab parses the pclntab, setting the version.
func ( *LineTable) () {
	.mu.Lock()
	defer .mu.Unlock()
	if .version != verUnknown {
		return
	}

	// Note that during this function, setting the version is the last thing we do.
	// If we set the version too early, and parsing failed (likely as a panic on
	// slice lookups), we'd have a mistaken version.
	//
	// Error paths through this code will default the version to 1.1.
	.version = ver11

	if !disableRecover {
		defer func() {
			// If we panic parsing, assume it's a Go 1.1 pclntab.
			recover()
		}()
	}

	// Check header: 4-byte magic, two zeros, pc quantum, pointer size.
	if len(.Data) < 16 || .Data[4] != 0 || .Data[5] != 0 ||
		(.Data[6] != 1 && .Data[6] != 2 && .Data[6] != 4) || // pc quantum
		(.Data[7] != 4 && .Data[7] != 8) { // pointer size
		return
	}

	var  version
	 := binary.LittleEndian.Uint32(.Data)
	 := binary.BigEndian.Uint32(.Data)
	switch {
	case  == go12magic:
		.binary,  = binary.LittleEndian, ver12
	case  == go12magic:
		.binary,  = binary.BigEndian, ver12
	case  == go116magic:
		.binary,  = binary.LittleEndian, ver116
	case  == go116magic:
		.binary,  = binary.BigEndian, ver116
	case  == go118magic:
		.binary,  = binary.LittleEndian, ver118
	case  == go118magic:
		.binary,  = binary.BigEndian, ver118
	case  == go120magic:
		.binary,  = binary.LittleEndian, ver120
	case  == go120magic:
		.binary,  = binary.BigEndian, ver120
	default:
		return
	}
	.version = 

	// quantum and ptrSize are the same between 1.2, 1.16, and 1.18
	.quantum = uint32(.Data[6])
	.ptrsize = uint32(.Data[7])

	 := func( uint32) uint64 {
		return .uintptr(.Data[8+*.ptrsize:])
	}
	 := func( uint32) []byte {
		return .Data[():]
	}

	switch  {
	case ver118, ver120:
		.nfunctab = uint32((0))
		.nfiletab = uint32((1))
		.textStart = .PC // use the start PC instead of reading from the table, which may be unrelocated
		.funcnametab = (3)
		.cutab = (4)
		.filetab = (5)
		.pctab = (6)
		.funcdata = (7)
		.functab = (7)
		 := (int(.nfunctab)*2 + 1) * .functabFieldSize()
		.functab = .functab[:]
	case ver116:
		.nfunctab = uint32((0))
		.nfiletab = uint32((1))
		.funcnametab = (2)
		.cutab = (3)
		.filetab = (4)
		.pctab = (5)
		.funcdata = (6)
		.functab = (6)
		 := (int(.nfunctab)*2 + 1) * .functabFieldSize()
		.functab = .functab[:]
	case ver12:
		.nfunctab = uint32(.uintptr(.Data[8:]))
		.funcdata = .Data
		.funcnametab = .Data
		.functab = .Data[8+.ptrsize:]
		.pctab = .Data
		 := (int(.nfunctab)*2 + 1) * .functabFieldSize()
		 := .binary.Uint32(.functab[:])
		.functab = .functab[:]
		.filetab = .Data[:]
		.nfiletab = .binary.Uint32(.filetab)
		.filetab = .filetab[:.nfiletab*4]
	default:
		panic("unreachable")
	}
}

// go12Funcs returns a slice of Funcs derived from the Go 1.2+ pcln table.
func ( *LineTable) () []Func {
	// Assume it is malformed and return nil on error.
	if !disableRecover {
		defer func() {
			recover()
		}()
	}

	 := .funcTab()
	 := make([]Func, .Count())
	 := make([]Sym, len())
	for  := range  {
		 := &[]
		.Entry = .pc()
		.End = .pc( + 1)
		 := .funcData(uint32())
		.LineTable = 
		.FrameSize = int(.deferreturn())
		[] = Sym{
			Value:     .Entry,
			Type:      'T',
			Name:      .funcName(.nameOff()),
			GoType:    0,
			Func:      ,
			goVersion: .version,
		}
		.Sym = &[]
	}
	return 
}

// findFunc returns the funcData corresponding to the given program counter.
func ( *LineTable) ( uint64) funcData {
	 := .funcTab()
	if  < .pc(0) ||  >= .pc(.Count()) {
		return funcData{}
	}
	 := sort.Search(int(.nfunctab), func( int) bool {
		return .pc() > 
	})
	--
	return .funcData(uint32())
}

// readvarint reads, removes, and returns a varint from *pp.
func ( *LineTable) ( *[]byte) uint32 {
	var ,  uint32
	 := *
	for  = 0; ;  += 7 {
		 := [0]
		 = [1:]
		 |= (uint32() & 0x7F) << 
		if &0x80 == 0 {
			break
		}
	}
	* = 
	return 
}

// funcName returns the name of the function found at off.
func ( *LineTable) ( uint32) string {
	if ,  := .funcNames[];  {
		return 
	}
	 := bytes.IndexByte(.funcnametab[:], 0)
	 := string(.funcnametab[ : +uint32()])
	.funcNames[] = 
	return 
}

// stringFrom returns a Go string found at off from a position.
func ( *LineTable) ( []byte,  uint32) string {
	if ,  := .strings[];  {
		return 
	}
	 := bytes.IndexByte([:], 0)
	 := string([ : +uint32()])
	.strings[] = 
	return 
}

// string returns a Go string found at off.
func ( *LineTable) ( uint32) string {
	return .stringFrom(.funcdata, )
}

// functabFieldSize returns the size in bytes of a single functab field.
func ( *LineTable) () int {
	if .version >= ver118 {
		return 4
	}
	return int(.ptrsize)
}

// funcTab returns t's funcTab.
func ( *LineTable) () funcTab {
	return funcTab{LineTable: , sz: .functabFieldSize()}
}

// funcTab is memory corresponding to a slice of functab structs, followed by an invalid PC.
// A functab struct is a PC and a func offset.
type funcTab struct {
	*LineTable
	sz int // cached result of t.functabFieldSize
}

// Count returns the number of func entries in f.
func ( funcTab) () int {
	return int(.nfunctab)
}

// pc returns the PC of the i'th func in f.
func ( funcTab) ( int) uint64 {
	 := .uint(.functab[2**.sz:])
	if .version >= ver118 {
		 += .textStart
	}
	return 
}

// funcOff returns the funcdata offset of the i'th func in f.
func ( funcTab) ( int) uint64 {
	return .uint(.functab[(2*+1)*.sz:])
}

// uint returns the uint stored at b.
func ( funcTab) ( []byte) uint64 {
	if .sz == 4 {
		return uint64(.binary.Uint32())
	}
	return .binary.Uint64()
}

// funcData is memory corresponding to an _func struct.
type funcData struct {
	t    *LineTable // LineTable this data is a part of
	data []byte     // raw memory for the function
}

// funcData returns the ith funcData in t.functab.
func ( *LineTable) ( uint32) funcData {
	 := .funcdata[.funcTab().funcOff(int()):]
	return funcData{t: , data: }
}

// IsZero reports whether f is the zero value.
func ( funcData) () bool {
	return .t == nil && .data == nil
}

// entryPC returns the func's entry PC.
func ( *funcData) () uint64 {
	// In Go 1.18, the first field of _func changed
	// from a uintptr entry PC to a uint32 entry offset.
	if .t.version >= ver118 {
		// TODO: support multiple text sections.
		// See runtime/symtab.go:(*moduledata).textAddr.
		return uint64(.t.binary.Uint32(.data)) + .t.textStart
	}
	return .t.uintptr(.data)
}

func ( funcData) () uint32     { return .field(1) }
func ( funcData) () uint32 { return .field(3) }
func ( funcData) () uint32      { return .field(5) }
func ( funcData) () uint32        { return .field(6) }
func ( funcData) () uint32    { return .field(8) }

// field returns the nth field of the _func struct.
// It panics if n == 0 or n > 9; for n == 0, call f.entryPC.
// Most callers should use a named field accessor (just above).
func ( funcData) ( uint32) uint32 {
	if  == 0 ||  > 9 {
		panic("bad funcdata field")
	}
	// In Go 1.18, the first field of _func changed
	// from a uintptr entry PC to a uint32 entry offset.
	 := .t.ptrsize
	if .t.version >= ver118 {
		 = 4
	}
	 :=  + (-1)*4 // subsequent fields are 4 bytes each
	 := .data[:]
	return .t.binary.Uint32()
}

// step advances to the next pc, value pair in the encoded table.
func ( *LineTable) ( *[]byte,  *uint64,  *int32,  bool) bool {
	 := .readvarint()
	if  == 0 && ! {
		return false
	}
	if &1 != 0 {
		 = ^( >> 1)
	} else {
		 >>= 1
	}
	 := int32()
	 := .readvarint() * .quantum
	* += uint64()
	* += 
	return true
}

// pcvalue reports the value associated with the target pc.
// off is the offset to the beginning of the pc-value table,
// and entry is the start PC for the corresponding function.
func ( *LineTable) ( uint32, ,  uint64) int32 {
	 := .pctab[:]

	 := int32(-1)
	 := 
	for .step(&, &, &,  == ) {
		if  <  {
			return 
		}
	}
	return -1
}

// findFileLine scans one function in the binary looking for a
// program counter in the given file on the given line.
// It does so by running the pc-value tables mapping program counter
// to file number. Since most functions come from a single file, these
// are usually short and quick to scan. If a file match is found, then the
// code goes to the expense of looking for a simultaneous line number match.
func ( *LineTable) ( uint64, ,  uint32, ,  int32,  []byte) uint64 {
	if  == 0 ||  == 0 {
		return 0
	}

	 := .pctab[:]
	 := .pctab[:]
	 := int32(-1)
	 := 
	 := int32(-1)
	 := 
	 := 
	for .step(&, &, &,  == ) {
		 := 
		if .version == ver116 || .version == ver118 || .version == ver120 {
			 = int32(.binary.Uint32([*4:]))
		}
		if  ==  &&  <  {
			// fileIndex is in effect starting at fileStartPC up to
			// but not including filePC, and it's the file we want.
			// Run the PC table looking for a matching line number
			// or until we reach filePC.
			 := 
			for  <  && .step(&, &, &,  == ) {
				// lineVal is in effect until linePC, and lineStartPC < filePC.
				if  ==  {
					if  <=  {
						return 
					}
					if  <  {
						return 
					}
				}
				 = 
			}
		}
		 = 
	}
	return 0
}

// go12PCToLine maps program counter to line number for the Go 1.2+ pcln table.
func ( *LineTable) ( uint64) ( int) {
	defer func() {
		if !disableRecover && recover() != nil {
			 = -1
		}
	}()

	 := .findFunc()
	if .IsZero() {
		return -1
	}
	 := .entryPC()
	 := .pcln()
	return int(.pcvalue(, , ))
}

// go12PCToFile maps program counter to file name for the Go 1.2+ pcln table.
func ( *LineTable) ( uint64) ( string) {
	defer func() {
		if !disableRecover && recover() != nil {
			 = ""
		}
	}()

	 := .findFunc()
	if .IsZero() {
		return ""
	}
	 := .entryPC()
	 := .pcfile()
	 := .pcvalue(, , )
	if .version == ver12 {
		if  <= 0 {
			return ""
		}
		return .string(.binary.Uint32(.filetab[4*:]))
	}
	// Go ≥ 1.16
	if  < 0 { // 0 is valid for ≥ 1.16
		return ""
	}
	 := .cuOffset()
	if  := .binary.Uint32(.cutab[(+uint32())*4:]);  != ^uint32(0) {
		return .stringFrom(.filetab, )
	}
	return ""
}

// go12LineToPC maps a (file, line) pair to a program counter for the Go 1.2+ pcln table.
func ( *LineTable) ( string,  int) ( uint64) {
	defer func() {
		if !disableRecover && recover() != nil {
			 = 0
		}
	}()

	.initFileMap()
	,  := .fileMap[]
	if ! {
		return 0
	}

	// Scan all functions.
	// If this turns out to be a bottleneck, we could build a map[int32][]int32
	// mapping file number to a list of functions with code from that file.
	var  []byte
	for  := uint32(0);  < .nfunctab; ++ {
		 := .funcData()
		 := .entryPC()
		 := .pcfile()
		 := .pcln()
		if .version == ver116 || .version == ver118 || .version == ver120 {
			if .cuOffset() == ^uint32(0) {
				// skip functions without compilation unit (not real function, or linker generated)
				continue
			}
			 = .cutab[.cuOffset()*4:]
		}
		 := .findFileLine(, , , int32(), int32(), )
		if  != 0 {
			return 
		}
	}
	return 0
}

// initFileMap initializes the map from file name to file number.
func ( *LineTable) () {
	.mu.Lock()
	defer .mu.Unlock()

	if .fileMap != nil {
		return
	}
	 := make(map[string]uint32)

	if .version == ver12 {
		for  := uint32(1);  < .nfiletab; ++ {
			 := .string(.binary.Uint32(.filetab[4*:]))
			[] = 
		}
	} else {
		var  uint32
		for  := uint32(0);  < .nfiletab; ++ {
			 := .stringFrom(.filetab, )
			[] = 
			 += uint32(len() + 1)
		}
	}
	.fileMap = 
}

// go12MapFiles adds to m a key for every file in the Go 1.2 LineTable.
// Every key maps to obj. That's not a very interesting map, but it provides
// a way for callers to obtain the list of files in the program.
func ( *LineTable) ( map[string]*Obj,  *Obj) {
	if !disableRecover {
		defer func() {
			recover()
		}()
	}

	.initFileMap()
	for  := range .fileMap {
		[] = 
	}
}

// disableRecover causes this package not to swallow panics.
// This is useful when making changes.
const disableRecover = false