// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package trace

import (
	
	
	
)

// mud is an updatable mutator utilization distribution.
//
// This is a continuous distribution of duration over mutator
// utilization. For example, the integral from mutator utilization a
// to b is the total duration during which the mutator utilization was
// in the range [a, b].
//
// This distribution is *not* normalized (it is not a probability
// distribution). This makes it easier to work with as it's being
// updated.
//
// It is represented as the sum of scaled uniform distribution
// functions and Dirac delta functions (which are treated as
// degenerate uniform distributions).
type mud struct {
	sorted, unsorted []edge

	// trackMass is the inverse cumulative sum to track as the
	// distribution is updated.
	trackMass float64
	// trackBucket is the bucket in which trackMass falls. If the
	// total mass of the distribution is < trackMass, this is
	// len(hist).
	trackBucket int
	// trackSum is the cumulative sum of hist[:trackBucket]. Once
	// trackSum >= trackMass, trackBucket must be recomputed.
	trackSum float64

	// hist is a hierarchical histogram of distribution mass.
	hist [mudDegree]float64
}

const (
	// mudDegree is the number of buckets in the MUD summary
	// histogram.
	mudDegree = 1024
)

type edge struct {
	// At x, the function increases by y.
	x, delta float64
	// Additionally at x is a Dirac delta function with area dirac.
	dirac float64
}

// add adds a uniform function over [l, r] scaled so the total weight
// of the uniform is area. If l==r, this adds a Dirac delta function.
func ( *mud) (, ,  float64) {
	if  == 0 {
		return
	}

	if  <  {
		,  = , 
	}

	// Add the edges.
	if  ==  {
		.unsorted = append(.unsorted, edge{, 0, })
	} else {
		 :=  / ( - )
		.unsorted = append(.unsorted, edge{, , 0}, edge{, -, 0})
	}

	// Update the histogram.
	 := &.hist
	,  := math.Modf( * mudDegree)
	 := int()
	if  >= mudDegree {
		,  = mudDegree-1, 1
	}
	if  ==  {
		[] += 
	} else {
		,  := math.Modf( * mudDegree)
		 := int()
		if  >= mudDegree {
			,  = mudDegree-1, 1
		}
		if  ==  {
			[] += 
		} else {
			 :=  / ( - ) / mudDegree
			[] +=  * (1 - )
			[] +=  * 
			for  :=  + 1;  < ; ++ {
				[] += 
			}
		}
	}

	// Update mass tracking.
	if  := float64(.trackBucket) / mudDegree;  <  {
		if  <  {
			.trackSum += 
		} else {
			.trackSum +=  * ( - ) / ( - )
		}
		if .trackSum >= .trackMass {
			// The tracked mass now falls in a different
			// bucket. Recompute the inverse cumulative sum.
			.setTrackMass(.trackMass)
		}
	}
}

// setTrackMass sets the mass to track the inverse cumulative sum for.
//
// Specifically, mass is a cumulative duration, and the mutator
// utilization bounds for this duration can be queried using
// approxInvCumulativeSum.
func ( *mud) ( float64) {
	.trackMass = 

	// Find the bucket currently containing trackMass by computing
	// the cumulative sum.
	 := 0.0
	for ,  := range .hist[:] {
		 :=  + 
		if  >  {
			// mass falls in bucket i.
			.trackBucket = 
			.trackSum = 
			return
		}
		 = 
	}
	.trackBucket = len(.hist)
	.trackSum = 
}

// approxInvCumulativeSum is like invCumulativeSum, but specifically
// operates on the tracked mass and returns an upper and lower bound
// approximation of the inverse cumulative sum.
//
// The true inverse cumulative sum will be in the range [lower, upper).
func ( *mud) () (float64, float64, bool) {
	if .trackBucket == len(.hist) {
		return math.NaN(), math.NaN(), false
	}
	return float64(.trackBucket) / mudDegree, float64(.trackBucket+1) / mudDegree, true
}

// invCumulativeSum returns x such that the integral of d from -∞ to x
// is y. If the total weight of d is less than y, it returns the
// maximum of the distribution and false.
//
// Specifically, y is a cumulative duration, and invCumulativeSum
// returns the mutator utilization x such that at least y time has
// been spent with mutator utilization <= x.
func ( *mud) ( float64) (float64, bool) {
	if len(.sorted) == 0 && len(.unsorted) == 0 {
		return math.NaN(), false
	}

	// Sort edges.
	 := .unsorted
	slices.SortFunc(, func(,  edge) int {
		return cmp.Compare(.x, .x)
	})
	// Merge with sorted edges.
	.unsorted = nil
	if .sorted == nil {
		.sorted = 
	} else {
		 := .sorted
		 := make([]edge, len()+len())
		,  := 0, 0
		for  := range  {
			if  >= len() {
				copy([:], [:])
				break
			} else if  >= len() {
				copy([:], [:])
				break
			} else if [].x < [].x {
				[] = []
				++
			} else {
				[] = []
				++
			}
		}
		.sorted = 
	}

	// Traverse edges in order computing a cumulative sum.
	, ,  := 0.0, 0.0, 0.0
	for ,  := range .sorted {
		 :=  + (.x-)*
		if  >=  {
			// y was exceeded between the previous edge
			// and this one.
			if  == 0 {
				// Anywhere between prevX and
				// e.x will do. We return e.x
				// because that takes care of
				// the y==0 case naturally.
				return .x, true
			}
			return (-)/ + , true
		}
		 += .dirac
		if  >=  {
			// y was exceeded by the Dirac delta at e.x.
			return .x, true
		}
		,  = , .x
		 += .delta
	}
	return , false
}