// Copyright 2015 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// This file implements Float-to-string conversion functions.// It is closely following the corresponding implementation// in strconv/ftoa.go, but modified and simplified for Float.package bigimport ()// Text converts the floating-point number x to a string according// to the given format and precision prec. The format is one of://// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits// 'f' -ddddd.dddd, no exponent// 'g' like 'e' for large exponents, like 'f' otherwise// 'G' like 'E' for large exponents, like 'f' otherwise// 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent// 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)// 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)//// For the power-of-two exponent formats, the mantissa is printed in normalized form://// 'x' hexadecimal mantissa in [1, 2), or 0// 'p' hexadecimal mantissa in [½, 1), or 0// 'b' decimal integer mantissa using x.Prec() bits, or 0//// Note that the 'x' form is the one used by most other languages and libraries.//// If format is a different character, Text returns a "%" followed by the// unrecognized format character.//// The precision prec controls the number of digits (excluding the exponent)// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.// For 'g' and 'G' it is the total number of digits. A negative precision selects// the smallest number of decimal digits necessary to identify the value x uniquely// using x.Prec() mantissa bits.// The prec value is ignored for the 'b' and 'p' formats.func ( *Float) ( byte, int) string { := 10// TODO(gri) determine a good/better value hereif > 0 { += }returnstring(.Append(make([]byte, 0, ), , ))}// String formats x like x.Text('g', 10).// (String must be called explicitly, [Float.Format] does not support %s verb.)func ( *Float) () string {return .Text('g', 10)}// Append appends to buf the string form of the floating-point number x,// as generated by x.Text, and returns the extended buffer.func ( *Float) ( []byte, byte, int) []byte {// signif .neg { = append(, '-') }// Infif .form == inf {if !.neg { = append(, '+') }returnappend(, "Inf"...) }// pick off easy formatsswitch {case'b':return .fmtB()case'p':return .fmtP()case'x':return .fmtX(, ) }// Algorithm: // 1) convert Float to multiprecision decimal // 2) round to desired precision // 3) read digits out and format// 1) convert Float to multiprecision decimalvardecimal// == 0.0if .form == finite {// x != 0 .init(.mant, int(.exp)-.mant.bitLen()) }// 2) round to desired precision := falseif < 0 { = trueroundShortest(&, )// Precision for shortest representation mode.switch {case'e', 'E': = len(.mant) - 1case'f': = max(len(.mant)-.exp, 0)case'g', 'G': = len(.mant) } } else {// round appropriatelyswitch {case'e', 'E':// one digit before and number of digits after decimal point .round(1 + )case'f':// number of digits before and after decimal point .round(.exp + )case'g', 'G':if == 0 { = 1 } .round() } }// 3) read digits out and formatswitch {case'e', 'E':returnfmtE(, , , )case'f':returnfmtF(, , )case'g', 'G':// trim trailing fractional zeros in %e format := if > len(.mant) && len(.mant) >= .exp { = len(.mant) }// %e is used if the exponent from the conversion // is less than -4 or greater than or equal to the precision. // If precision was the shortest possible, use eprec = 6 for // this decision.if { = 6 } := .exp - 1if < -4 || >= {if > len(.mant) { = len(.mant) }returnfmtE(, +'e'-'g', -1, ) }if > .exp { = len(.mant) }returnfmtF(, max(-.exp, 0), ) }// unknown formatif .neg { = [:len()-1] // sign was added prematurely - remove it again }returnappend(, '%', )}func roundShortest( *decimal, *Float) {// if the mantissa is zero, the number is zero - stop nowiflen(.mant) == 0 {return }// Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp] // (possibly exclusive) round to x for the given precision of x. // Compute the lower and upper bound in decimal form and find the // shortest decimal number d such that lower <= d <= upper.// TODO(gri) strconv/ftoa.do describes a shortcut in some cases. // See if we can use it (in adjusted form) here as well.// 1) Compute normalized mantissa mant and exponent exp for x such // that the lsb of mant corresponds to 1/2 ulp for the precision of // x (i.e., for mant we want x.prec + 1 bits). := nat(nil).set(.mant) := int(.exp) - .bitLen() := .bitLen() - int(.prec+1)switch {case < 0: = .shl(, uint(-))case > 0: = .shr(, uint(+)) } += // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec// 2) Compute lower bound by subtracting 1/2 ulp.vardecimalvarnat .init(.sub(, natOne), )// 3) Compute upper bound by adding 1/2 ulp.vardecimal .init(.add(, natOne), )// The upper and lower bounds are possible outputs only if // the original mantissa is even, so that ToNearestEven rounding // would round to the original mantissa and not the neighbors. := [0]&2 == 0// test bit 1 since original mantissa was shifted by 1// Now we can figure out the minimum number of digits required. // Walk along until d has distinguished itself from upper and lower.for , := range .mant { := .at() := .at()// Okay to round down (truncate) if lower has a different digit // or if lower is inclusive and is exactly the result of rounding // down (i.e., and we have reached the final digit of lower). := != || && +1 == len(.mant)// Okay to round up if upper has a different digit and either upper // is inclusive or upper is bigger than the result of rounding up. := != && ( || +1 < || +1 < len(.mant))// If it's okay to do either, then round to the nearest one. // If it's okay to do only one, do it.switch {case && : .round( + 1)returncase : .roundDown( + 1)returncase : .roundUp( + 1)return } }}// %e: d.ddddde±ddfunc fmtE( []byte, byte, int, decimal) []byte {// first digit := byte('0')iflen(.mant) > 0 { = .mant[0] } = append(, )// .moredigitsif > 0 { = append(, '.') := 1 := min(len(.mant), +1)if < { = append(, .mant[:]...) = }for ; <= ; ++ { = append(, '0') } }// e± = append(, )varint64iflen(.mant) > 0 { = int64(.exp) - 1// -1 because first digit was printed before '.' }if < 0 { = '-' = - } else { = '+' } = append(, )// dd...dif < 10 { = append(, '0') // at least 2 exponent digits }returnstrconv.AppendInt(, , 10)}// %f: ddddddd.dddddfunc fmtF( []byte, int, decimal) []byte {// integer, padded with zeros as neededif .exp > 0 { := min(len(.mant), .exp) = append(, .mant[:]...)for ; < .exp; ++ { = append(, '0') } } else { = append(, '0') }// fractionif > 0 { = append(, '.')for := 0; < ; ++ { = append(, .at(.exp+)) } }return}// fmtB appends the string of x in the format mantissa "p" exponent// with a decimal mantissa and a binary exponent, or "0" if x is zero,// and returns the extended buffer.// The mantissa is normalized such that is uses x.Prec() bits in binary// representation.// The sign of x is ignored, and x must not be an Inf.// (The caller handles Inf before invoking fmtB.)func ( *Float) ( []byte) []byte {if .form == zero {returnappend(, '0') }ifdebugFloat && .form != finite {panic("non-finite float") }// x != 0// adjust mantissa to use exactly x.prec bits := .mantswitch := uint32(len(.mant)) * _W; {case < .prec: = nat(nil).shl(, uint(.prec-))case > .prec: = nat(nil).shr(, uint(-.prec)) } = append(, .utoa(10)...) = append(, 'p') := int64(.exp) - int64(.prec)if >= 0 { = append(, '+') }returnstrconv.AppendInt(, , 10)}// fmtX appends the string of x in the format "0x1." mantissa "p" exponent// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,// and returns the extended buffer.// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.// The sign of x is ignored, and x must not be an Inf.// (The caller handles Inf before invoking fmtX.)func ( *Float) ( []byte, int) []byte {if .form == zero { = append(, "0x0"...)if > 0 { = append(, '.')for := 0; < ; ++ { = append(, '0') } } = append(, "p+00"...)return }ifdebugFloat && .form != finite {panic("non-finite float") }// round mantissa to n bitsvaruintif < 0 { = 1 + (.MinPrec()-1+3)/4*4// round MinPrec up to 1 mod 4 } else { = 1 + 4*uint() }// n%4 == 1 = new(Float).SetPrec().SetMode(.mode).Set()// adjust mantissa to use exactly n bits := .mantswitch := uint(len(.mant)) * _W; {case < : = nat(nil).shl(, -)case > : = nat(nil).shr(, -) } := int64(.exp) - 1// avoid wrap-around := .utoa(16)ifdebugFloat && [0] != '1' {panic("incorrect mantissa: " + string()) } = append(, "0x1"...)iflen() > 1 { = append(, '.') = append(, [1:]...) } = append(, 'p')if >= 0 { = append(, '+') } else { = - = append(, '-') }// Force at least two exponent digits, to match fmt.if < 10 { = append(, '0') }returnstrconv.AppendInt(, , 10)}// fmtP appends the string of x in the format "0x." mantissa "p" exponent// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,// and returns the extended buffer.// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.// The sign of x is ignored, and x must not be an Inf.// (The caller handles Inf before invoking fmtP.)func ( *Float) ( []byte) []byte {if .form == zero {returnappend(, '0') }ifdebugFloat && .form != finite {panic("non-finite float") }// x != 0// remove trailing 0 words early // (no need to convert to hex 0's and trim later) := .mant := 0for < len() && [] == 0 { ++ } = [:] = append(, "0x."...) = append(, bytes.TrimRight(.utoa(16), "0")...) = append(, 'p')if .exp >= 0 { = append(, '+') }returnstrconv.AppendInt(, int64(.exp), 10)}var _ fmt.Formatter = &floatZero// *Float must implement fmt.Formatter// Format implements [fmt.Formatter]. It accepts all the regular// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the// interpretation of 'p'. The 'v' format is handled like 'g'.// Format also supports specification of the minimum precision// in digits, the output field width, as well as the format flags// '+' and ' ' for sign control, '0' for space or zero padding,// and '-' for left or right justification. See the fmt package// for details.func ( *Float) ( fmt.State, rune) { , := .Precision()if ! { = 6// default precision for 'e', 'f' }switch {case'e', 'E', 'f', 'b', 'p', 'x':// nothing to docase'F':// (*Float).Text doesn't support 'F'; handle like 'f' = 'f'case'v':// handle like 'g' = 'g'fallthroughcase'g', 'G':if ! { = -1// default precision for 'g', 'G' }default:fmt.Fprintf(, "%%!%c(*big.Float=%s)", , .String())return }var []byte = .Append(, byte(), )iflen() == 0 { = []byte("?") // should never happen, but don't crash }// len(buf) > 0varstringswitch {case [0] == '-': = "-" = [1:]case [0] == '+':// +Inf = "+"if .Flag(' ') { = " " } = [1:]case .Flag('+'): = "+"case .Flag(' '): = " " }varintif , := .Width(); && > len()+len() { = - len() - len() }switch {case .Flag('0') && !.IsInf():// 0-padding on leftwriteMultiple(, , 1)writeMultiple(, "0", ) .Write()case .Flag('-'):// padding on rightwriteMultiple(, , 1) .Write()writeMultiple(, " ", )default:// padding on leftwriteMultiple(, " ", )writeMultiple(, , 1) .Write() }}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.