// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements Float-to-string conversion functions.
// It is closely following the corresponding implementation
// in strconv/ftoa.go, but modified and simplified for Float.

package big

import (
	
	
	
)

// Text converts the floating-point number x to a string according
// to the given format and precision prec. The format is one of:
//
//	'e'	-d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
//	'E'	-d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
//	'f'	-ddddd.dddd, no exponent
//	'g'	like 'e' for large exponents, like 'f' otherwise
//	'G'	like 'E' for large exponents, like 'f' otherwise
//	'x'	-0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent
//	'p'	-0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)
//	'b'	-ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)
//
// For the power-of-two exponent formats, the mantissa is printed in normalized form:
//
//	'x'	hexadecimal mantissa in [1, 2), or 0
//	'p'	hexadecimal mantissa in [½, 1), or 0
//	'b'	decimal integer mantissa using x.Prec() bits, or 0
//
// Note that the 'x' form is the one used by most other languages and libraries.
//
// If format is a different character, Text returns a "%" followed by the
// unrecognized format character.
//
// The precision prec controls the number of digits (excluding the exponent)
// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.
// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.
// For 'g' and 'G' it is the total number of digits. A negative precision selects
// the smallest number of decimal digits necessary to identify the value x uniquely
// using x.Prec() mantissa bits.
// The prec value is ignored for the 'b' and 'p' formats.
func ( *Float) ( byte,  int) string {
	 := 10 // TODO(gri) determine a good/better value here
	if  > 0 {
		 += 
	}
	return string(.Append(make([]byte, 0, ), , ))
}

// String formats x like x.Text('g', 10).
// (String must be called explicitly, [Float.Format] does not support %s verb.)
func ( *Float) () string {
	return .Text('g', 10)
}

// Append appends to buf the string form of the floating-point number x,
// as generated by x.Text, and returns the extended buffer.
func ( *Float) ( []byte,  byte,  int) []byte {
	// sign
	if .neg {
		 = append(, '-')
	}

	// Inf
	if .form == inf {
		if !.neg {
			 = append(, '+')
		}
		return append(, "Inf"...)
	}

	// pick off easy formats
	switch  {
	case 'b':
		return .fmtB()
	case 'p':
		return .fmtP()
	case 'x':
		return .fmtX(, )
	}

	// Algorithm:
	//   1) convert Float to multiprecision decimal
	//   2) round to desired precision
	//   3) read digits out and format

	// 1) convert Float to multiprecision decimal
	var  decimal // == 0.0
	if .form == finite {
		// x != 0
		.init(.mant, int(.exp)-.mant.bitLen())
	}

	// 2) round to desired precision
	 := false
	if  < 0 {
		 = true
		roundShortest(&, )
		// Precision for shortest representation mode.
		switch  {
		case 'e', 'E':
			 = len(.mant) - 1
		case 'f':
			 = max(len(.mant)-.exp, 0)
		case 'g', 'G':
			 = len(.mant)
		}
	} else {
		// round appropriately
		switch  {
		case 'e', 'E':
			// one digit before and number of digits after decimal point
			.round(1 + )
		case 'f':
			// number of digits before and after decimal point
			.round(.exp + )
		case 'g', 'G':
			if  == 0 {
				 = 1
			}
			.round()
		}
	}

	// 3) read digits out and format
	switch  {
	case 'e', 'E':
		return fmtE(, , , )
	case 'f':
		return fmtF(, , )
	case 'g', 'G':
		// trim trailing fractional zeros in %e format
		 := 
		if  > len(.mant) && len(.mant) >= .exp {
			 = len(.mant)
		}
		// %e is used if the exponent from the conversion
		// is less than -4 or greater than or equal to the precision.
		// If precision was the shortest possible, use eprec = 6 for
		// this decision.
		if  {
			 = 6
		}
		 := .exp - 1
		if  < -4 ||  >=  {
			if  > len(.mant) {
				 = len(.mant)
			}
			return fmtE(, +'e'-'g', -1, )
		}
		if  > .exp {
			 = len(.mant)
		}
		return fmtF(, max(-.exp, 0), )
	}

	// unknown format
	if .neg {
		 = [:len()-1] // sign was added prematurely - remove it again
	}
	return append(, '%', )
}

func roundShortest( *decimal,  *Float) {
	// if the mantissa is zero, the number is zero - stop now
	if len(.mant) == 0 {
		return
	}

	// Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
	// (possibly exclusive) round to x for the given precision of x.
	// Compute the lower and upper bound in decimal form and find the
	// shortest decimal number d such that lower <= d <= upper.

	// TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
	// See if we can use it (in adjusted form) here as well.

	// 1) Compute normalized mantissa mant and exponent exp for x such
	// that the lsb of mant corresponds to 1/2 ulp for the precision of
	// x (i.e., for mant we want x.prec + 1 bits).
	 := nat(nil).set(.mant)
	 := int(.exp) - .bitLen()
	 := .bitLen() - int(.prec+1)
	switch {
	case  < 0:
		 = .shl(, uint(-))
	case  > 0:
		 = .shr(, uint(+))
	}
	 += 
	// x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec

	// 2) Compute lower bound by subtracting 1/2 ulp.
	var  decimal
	var  nat
	.init(.sub(, natOne), )

	// 3) Compute upper bound by adding 1/2 ulp.
	var  decimal
	.init(.add(, natOne), )

	// The upper and lower bounds are possible outputs only if
	// the original mantissa is even, so that ToNearestEven rounding
	// would round to the original mantissa and not the neighbors.
	 := [0]&2 == 0 // test bit 1 since original mantissa was shifted by 1

	// Now we can figure out the minimum number of digits required.
	// Walk along until d has distinguished itself from upper and lower.
	for ,  := range .mant {
		 := .at()
		 := .at()

		// Okay to round down (truncate) if lower has a different digit
		// or if lower is inclusive and is exactly the result of rounding
		// down (i.e., and we have reached the final digit of lower).
		 :=  !=  ||  && +1 == len(.mant)

		// Okay to round up if upper has a different digit and either upper
		// is inclusive or upper is bigger than the result of rounding up.
		 :=  !=  && ( || +1 <  || +1 < len(.mant))

		// If it's okay to do either, then round to the nearest one.
		// If it's okay to do only one, do it.
		switch {
		case  && :
			.round( + 1)
			return
		case :
			.roundDown( + 1)
			return
		case :
			.roundUp( + 1)
			return
		}
	}
}

// %e: d.ddddde±dd
func fmtE( []byte,  byte,  int,  decimal) []byte {
	// first digit
	 := byte('0')
	if len(.mant) > 0 {
		 = .mant[0]
	}
	 = append(, )

	// .moredigits
	if  > 0 {
		 = append(, '.')
		 := 1
		 := min(len(.mant), +1)
		if  <  {
			 = append(, .mant[:]...)
			 = 
		}
		for ;  <= ; ++ {
			 = append(, '0')
		}
	}

	// e±
	 = append(, )
	var  int64
	if len(.mant) > 0 {
		 = int64(.exp) - 1 // -1 because first digit was printed before '.'
	}
	if  < 0 {
		 = '-'
		 = -
	} else {
		 = '+'
	}
	 = append(, )

	// dd...d
	if  < 10 {
		 = append(, '0') // at least 2 exponent digits
	}
	return strconv.AppendInt(, , 10)
}

// %f: ddddddd.ddddd
func fmtF( []byte,  int,  decimal) []byte {
	// integer, padded with zeros as needed
	if .exp > 0 {
		 := min(len(.mant), .exp)
		 = append(, .mant[:]...)
		for ;  < .exp; ++ {
			 = append(, '0')
		}
	} else {
		 = append(, '0')
	}

	// fraction
	if  > 0 {
		 = append(, '.')
		for  := 0;  < ; ++ {
			 = append(, .at(.exp+))
		}
	}

	return 
}

// fmtB appends the string of x in the format mantissa "p" exponent
// with a decimal mantissa and a binary exponent, or "0" if x is zero,
// and returns the extended buffer.
// The mantissa is normalized such that is uses x.Prec() bits in binary
// representation.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtB.)
func ( *Float) ( []byte) []byte {
	if .form == zero {
		return append(, '0')
	}

	if debugFloat && .form != finite {
		panic("non-finite float")
	}
	// x != 0

	// adjust mantissa to use exactly x.prec bits
	 := .mant
	switch  := uint32(len(.mant)) * _W; {
	case  < .prec:
		 = nat(nil).shl(, uint(.prec-))
	case  > .prec:
		 = nat(nil).shr(, uint(-.prec))
	}

	 = append(, .utoa(10)...)
	 = append(, 'p')
	 := int64(.exp) - int64(.prec)
	if  >= 0 {
		 = append(, '+')
	}
	return strconv.AppendInt(, , 10)
}

// fmtX appends the string of x in the format "0x1." mantissa "p" exponent
// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,
// and returns the extended buffer.
// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtX.)
func ( *Float) ( []byte,  int) []byte {
	if .form == zero {
		 = append(, "0x0"...)
		if  > 0 {
			 = append(, '.')
			for  := 0;  < ; ++ {
				 = append(, '0')
			}
		}
		 = append(, "p+00"...)
		return 
	}

	if debugFloat && .form != finite {
		panic("non-finite float")
	}

	// round mantissa to n bits
	var  uint
	if  < 0 {
		 = 1 + (.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4
	} else {
		 = 1 + 4*uint()
	}
	// n%4 == 1
	 = new(Float).SetPrec().SetMode(.mode).Set()

	// adjust mantissa to use exactly n bits
	 := .mant
	switch  := uint(len(.mant)) * _W; {
	case  < :
		 = nat(nil).shl(, -)
	case  > :
		 = nat(nil).shr(, -)
	}
	 := int64(.exp) - 1 // avoid wrap-around

	 := .utoa(16)
	if debugFloat && [0] != '1' {
		panic("incorrect mantissa: " + string())
	}
	 = append(, "0x1"...)
	if len() > 1 {
		 = append(, '.')
		 = append(, [1:]...)
	}

	 = append(, 'p')
	if  >= 0 {
		 = append(, '+')
	} else {
		 = -
		 = append(, '-')
	}
	// Force at least two exponent digits, to match fmt.
	if  < 10 {
		 = append(, '0')
	}
	return strconv.AppendInt(, , 10)
}

// fmtP appends the string of x in the format "0x." mantissa "p" exponent
// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
// and returns the extended buffer.
// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtP.)
func ( *Float) ( []byte) []byte {
	if .form == zero {
		return append(, '0')
	}

	if debugFloat && .form != finite {
		panic("non-finite float")
	}
	// x != 0

	// remove trailing 0 words early
	// (no need to convert to hex 0's and trim later)
	 := .mant
	 := 0
	for  < len() && [] == 0 {
		++
	}
	 = [:]

	 = append(, "0x."...)
	 = append(, bytes.TrimRight(.utoa(16), "0")...)
	 = append(, 'p')
	if .exp >= 0 {
		 = append(, '+')
	}
	return strconv.AppendInt(, int64(.exp), 10)
}

var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter

// Format implements [fmt.Formatter]. It accepts all the regular
// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the
// interpretation of 'p'. The 'v' format is handled like 'g'.
// Format also supports specification of the minimum precision
// in digits, the output field width, as well as the format flags
// '+' and ' ' for sign control, '0' for space or zero padding,
// and '-' for left or right justification. See the fmt package
// for details.
func ( *Float) ( fmt.State,  rune) {
	,  := .Precision()
	if ! {
		 = 6 // default precision for 'e', 'f'
	}

	switch  {
	case 'e', 'E', 'f', 'b', 'p', 'x':
		// nothing to do
	case 'F':
		// (*Float).Text doesn't support 'F'; handle like 'f'
		 = 'f'
	case 'v':
		// handle like 'g'
		 = 'g'
		fallthrough
	case 'g', 'G':
		if ! {
			 = -1 // default precision for 'g', 'G'
		}
	default:
		fmt.Fprintf(, "%%!%c(*big.Float=%s)", , .String())
		return
	}
	var  []byte
	 = .Append(, byte(), )
	if len() == 0 {
		 = []byte("?") // should never happen, but don't crash
	}
	// len(buf) > 0

	var  string
	switch {
	case [0] == '-':
		 = "-"
		 = [1:]
	case [0] == '+':
		// +Inf
		 = "+"
		if .Flag(' ') {
			 = " "
		}
		 = [1:]
	case .Flag('+'):
		 = "+"
	case .Flag(' '):
		 = " "
	}

	var  int
	if ,  := .Width();  &&  > len()+len() {
		 =  - len() - len()
	}

	switch {
	case .Flag('0') && !.IsInf():
		// 0-padding on left
		writeMultiple(, , 1)
		writeMultiple(, "0", )
		.Write()
	case .Flag('-'):
		// padding on right
		writeMultiple(, , 1)
		.Write()
		writeMultiple(, " ", )
	default:
		// padding on left
		writeMultiple(, " ", )
		writeMultiple(, , 1)
		.Write()
	}
}