Source File
rand.go
Belonging Package
math/rand
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package rand implements pseudo-random number generators suitable for tasks// such as simulation, but it should not be used for security-sensitive work.//// Random numbers are generated by a [Source], usually wrapped in a [Rand].// Both types should be used by a single goroutine at a time: sharing among// multiple goroutines requires some kind of synchronization.//// Top-level functions, such as [Float64] and [Int],// are safe for concurrent use by multiple goroutines.//// This package's outputs might be easily predictable regardless of how it's// seeded. For random numbers suitable for security-sensitive work, see the// crypto/rand package.package randimport (_ // for go:linkname)// A Source represents a source of uniformly-distributed// pseudo-random int64 values in the range [0, 1<<63).//// A Source is not safe for concurrent use by multiple goroutines.type Source interface {Int63() int64Seed(seed int64)}// A Source64 is a [Source] that can also generate// uniformly-distributed pseudo-random uint64 values in// the range [0, 1<<64) directly.// If a [Rand] r's underlying [Source] s implements Source64,// then r.Uint64 returns the result of one call to s.Uint64// instead of making two calls to s.Int63.type Source64 interface {SourceUint64() uint64}// NewSource returns a new pseudo-random [Source] seeded with the given value.// Unlike the default [Source] used by top-level functions, this source is not// safe for concurrent use by multiple goroutines.// The returned [Source] implements [Source64].func ( int64) Source {return newSource()}func newSource( int64) *rngSource {var rngSource.Seed()return &}// A Rand is a source of random numbers.type Rand struct {src Sources64 Source64 // non-nil if src is source64// readVal contains remainder of 63-bit integer used for bytes// generation during most recent Read call.// It is saved so next Read call can start where the previous// one finished.readVal int64// readPos indicates the number of low-order bytes of readVal// that are still valid.readPos int8}// New returns a new [Rand] that uses random values from src// to generate other random values.func ( Source) *Rand {, := .(Source64)return &Rand{src: , s64: }}// Seed uses the provided seed value to initialize the generator to a deterministic state.// Seed should not be called concurrently with any other [Rand] method.func ( *Rand) ( int64) {if , := .src.(*lockedSource); {.seedPos(, &.readPos)return}.src.Seed().readPos = 0}// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.func ( *Rand) () int64 { return .src.Int63() }// Uint32 returns a pseudo-random 32-bit value as a uint32.func ( *Rand) () uint32 { return uint32(.Int63() >> 31) }// Uint64 returns a pseudo-random 64-bit value as a uint64.func ( *Rand) () uint64 {if .s64 != nil {return .s64.Uint64()}return uint64(.Int63())>>31 | uint64(.Int63())<<32}// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.func ( *Rand) () int32 { return int32(.Int63() >> 32) }// Int returns a non-negative pseudo-random int.func ( *Rand) () int {:= uint(.Int63())return int( << 1 >> 1) // clear sign bit if int == int32}// Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n).// It panics if n <= 0.func ( *Rand) ( int64) int64 {if <= 0 {panic("invalid argument to Int63n")}if &(-1) == 0 { // n is power of two, can maskreturn .Int63() & ( - 1)}:= int64((1 << 63) - 1 - (1<<63)%uint64()):= .Int63()for > {= .Int63()}return %}// Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).// It panics if n <= 0.func ( *Rand) ( int32) int32 {if <= 0 {panic("invalid argument to Int31n")}if &(-1) == 0 { // n is power of two, can maskreturn .Int31() & ( - 1)}:= int32((1 << 31) - 1 - (1<<31)%uint32()):= .Int31()for > {= .Int31()}return %}// int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).// n must be > 0, but int31n does not check this; the caller must ensure it.// int31n exists because Int31n is inefficient, but Go 1 compatibility// requires that the stream of values produced by math/rand remain unchanged.// int31n can thus only be used internally, by newly introduced APIs.//// For implementation details, see:// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction// https://lemire.me/blog/2016/06/30/fast-random-shufflingfunc ( *Rand) ( int32) int32 {:= .Uint32():= uint64() * uint64():= uint32()if < uint32() {:= uint32(-) % uint32()for < {= .Uint32()= uint64() * uint64()= uint32()}}return int32( >> 32)}// Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n).// It panics if n <= 0.func ( *Rand) ( int) int {if <= 0 {panic("invalid argument to Intn")}if <= 1<<31-1 {return int(.Int31n(int32()))}return int(.Int63n(int64()))}// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).func ( *Rand) () float64 {// A clearer, simpler implementation would be:// return float64(r.Int63n(1<<53)) / (1<<53)// However, Go 1 shipped with// return float64(r.Int63()) / (1 << 63)// and we want to preserve that value stream.//// There is one bug in the value stream: r.Int63() may be so close// to 1<<63 that the division rounds up to 1.0, and we've guaranteed// that the result is always less than 1.0.//// We tried to fix this by mapping 1.0 back to 0.0, but since float64// values near 0 are much denser than near 1, mapping 1 to 0 caused// a theoretically significant overshoot in the probability of returning 0.// Instead of that, if we round up to 1, just try again.// Getting 1 only happens 1/2⁵³ of the time, so most clients// will not observe it anyway.::= float64(.Int63()) / (1 << 63)if == 1 {goto // resample; this branch is taken O(never)}return}// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).func ( *Rand) () float32 {// Same rationale as in Float64: we want to preserve the Go 1 value// stream except we want to fix it not to return 1.0// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).::= float32(.Float64())if == 1 {goto // resample; this branch is taken O(very rarely)}return}// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers// in the half-open interval [0,n).func ( *Rand) ( int) []int {:= make([]int, )// In the following loop, the iteration when i=0 always swaps m[0] with m[0].// A change to remove this useless iteration is to assign 1 to i in the init// statement. But Perm also effects r. Making this change will affect// the final state of r. So this change can't be made for compatibility// reasons for Go 1.for := 0; < ; ++ {:= .Intn( + 1)[] = [][] =}return}// Shuffle pseudo-randomizes the order of elements.// n is the number of elements. Shuffle panics if n < 0.// swap swaps the elements with indexes i and j.func ( *Rand) ( int, func(, int)) {if < 0 {panic("invalid argument to Shuffle")}// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle// Shuffle really ought not be called with n that doesn't fit in 32 bits.// Not only will it take a very long time, but with 2³¹! possible permutations,// there's no way that any PRNG can have a big enough internal state to// generate even a minuscule percentage of the possible permutations.// Nevertheless, the right API signature accepts an int n, so handle it as best we can.:= - 1for ; > 1<<31-1-1; -- {:= int(.Int63n(int64( + 1)))(, )}for ; > 0; -- {:= int(.int31n(int32( + 1)))(, )}}// Read generates len(p) random bytes and writes them into p. It// always returns len(p) and a nil error.// Read should not be called concurrently with any other Rand method.func ( *Rand) ( []byte) ( int, error) {switch src := .src.(type) {case *lockedSource:return .read(, &.readVal, &.readPos)case *runtimeSource:return .read(, &.readVal, &.readPos)}return read(, .src, &.readVal, &.readPos)}func read( []byte, Source, *int64, *int8) ( int, error) {:= *:= *, := .(*rngSource)for = 0; < len(); ++ {if == 0 {if != nil {= .Int63()} else {= .Int63()}= 7}[] = byte()>>= 8--}* =* =return}/** Top-level convenience functions*/// globalRandGenerator is the source of random numbers for the top-level// convenience functions. When possible it uses the runtime fastrand64// function to avoid locking. This is not possible if the user called Seed,// either explicitly or implicitly via GODEBUG=randautoseed=0.var globalRandGenerator atomic.Pointer[Rand]var randautoseed = godebug.New("randautoseed")// randseednop controls whether the global Seed is a no-op.var randseednop = godebug.New("randseednop")// globalRand returns the generator to use for the top-level convenience// functions.func globalRand() *Rand {if := globalRandGenerator.Load(); != nil {return}// This is the first call. Initialize based on GODEBUG.var *Randif randautoseed.Value() == "0" {randautoseed.IncNonDefault()= New(new(lockedSource)).Seed(1)} else {= &Rand{src: &runtimeSource{},s64: &runtimeSource{},}}if !globalRandGenerator.CompareAndSwap(nil, ) {// Two different goroutines called some top-level// function at the same time. While the results in// that case are unpredictable, if we just use r here,// and we are using a seed, we will most likely return// the same value for both calls. That doesn't seem ideal.// Just use the first one to get in.return globalRandGenerator.Load()}return}//go:linkname runtime_rand runtime.randfunc runtime_rand() uint64// runtimeSource is an implementation of Source64 that uses the runtime// fastrand functions.type runtimeSource struct {// The mutex is used to avoid race conditions in Read.mu sync.Mutex}func (*runtimeSource) () int64 {return int64(runtime_rand() & rngMask)}func (*runtimeSource) (int64) {panic("internal error: call to runtimeSource.Seed")}func (*runtimeSource) () uint64 {return runtime_rand()}func ( *runtimeSource) ( []byte, *int64, *int8) ( int, error) {.mu.Lock(), = read(, , , ).mu.Unlock()return}// Seed uses the provided seed value to initialize the default Source to a// deterministic state. Seed values that have the same remainder when// divided by 2³¹-1 generate the same pseudo-random sequence.// Seed, unlike the [Rand.Seed] method, is safe for concurrent use.//// If Seed is not called, the generator is seeded randomly at program startup.//// Prior to Go 1.20, the generator was seeded like Seed(1) at program startup.// To force the old behavior, call Seed(1) at program startup.// Alternately, set GODEBUG=randautoseed=0 in the environment// before making any calls to functions in this package.//// Deprecated: As of Go 1.20 there is no reason to call Seed with// a random value. Programs that call Seed with a known value to get// a specific sequence of results should use New(NewSource(seed)) to// obtain a local random generator.//// As of Go 1.24 [Seed] is a no-op. To restore the previous behavior set// GODEBUG=randseednop=0.func ( int64) {if randseednop.Value() != "0" {return}randseednop.IncNonDefault():= globalRandGenerator.Load()// If we are already using a lockedSource, we can just re-seed it.if != nil {if , := .src.(*lockedSource); {.Seed()return}}// Otherwise either// 1) orig == nil, which is the normal case when Seed is the first// top-level function to be called, or// 2) orig is already a runtimeSource, in which case we need to change// to a lockedSource.// Either way we do the same thing.:= New(new(lockedSource)).Seed()if !globalRandGenerator.CompareAndSwap(, ) {// Something changed underfoot. Retry to be safe.()}}// Int63 returns a non-negative pseudo-random 63-bit integer as an int64// from the default [Source].func () int64 { return globalRand().Int63() }// Uint32 returns a pseudo-random 32-bit value as a uint32// from the default [Source].func () uint32 { return globalRand().Uint32() }// Uint64 returns a pseudo-random 64-bit value as a uint64// from the default [Source].func () uint64 { return globalRand().Uint64() }// Int31 returns a non-negative pseudo-random 31-bit integer as an int32// from the default [Source].func () int32 { return globalRand().Int31() }// Int returns a non-negative pseudo-random int from the default [Source].func () int { return globalRand().Int() }// Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n)// from the default [Source].// It panics if n <= 0.func ( int64) int64 { return globalRand().Int63n() }// Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n)// from the default [Source].// It panics if n <= 0.func ( int32) int32 { return globalRand().Int31n() }// Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n)// from the default [Source].// It panics if n <= 0.func ( int) int { return globalRand().Intn() }// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0)// from the default [Source].func () float64 { return globalRand().Float64() }// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0)// from the default [Source].func () float32 { return globalRand().Float32() }// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers// in the half-open interval [0,n) from the default [Source].func ( int) []int { return globalRand().Perm() }// Shuffle pseudo-randomizes the order of elements using the default [Source].// n is the number of elements. Shuffle panics if n < 0.// swap swaps the elements with indexes i and j.func ( int, func(, int)) { globalRand().Shuffle(, ) }// Read generates len(p) random bytes from the default [Source] and// writes them into p. It always returns len(p) and a nil error.// Read, unlike the [Rand.Read] method, is safe for concurrent use.//// Deprecated: For almost all use cases, [crypto/rand.Read] is more appropriate.// If a deterministic source is required, use [math/rand/v2.ChaCha8.Read].func ( []byte) ( int, error) { return globalRand().Read() }// NormFloat64 returns a normally distributed float64 in the range// [-[math.MaxFloat64], +[math.MaxFloat64]] with// standard normal distribution (mean = 0, stddev = 1)// from the default [Source].// To produce a different normal distribution, callers can// adjust the output using://// sample = NormFloat64() * desiredStdDev + desiredMeanfunc () float64 { return globalRand().NormFloat64() }// ExpFloat64 returns an exponentially distributed float64 in the range// (0, +[math.MaxFloat64]] with an exponential distribution whose rate parameter// (lambda) is 1 and whose mean is 1/lambda (1) from the default [Source].// To produce a distribution with a different rate parameter,// callers can adjust the output using://// sample = ExpFloat64() / desiredRateParameterfunc () float64 { return globalRand().ExpFloat64() }type lockedSource struct {lk sync.Mutexs *rngSource}func ( *lockedSource) () ( int64) {.lk.Lock()= .s.Int63().lk.Unlock()return}func ( *lockedSource) () ( uint64) {.lk.Lock()= .s.Uint64().lk.Unlock()return}func ( *lockedSource) ( int64) {.lk.Lock().seed().lk.Unlock()}// seedPos implements Seed for a lockedSource without a race condition.func ( *lockedSource) ( int64, *int8) {.lk.Lock().seed()* = 0.lk.Unlock()}// seed seeds the underlying source.// The caller must have locked r.lk.func ( *lockedSource) ( int64) {if .s == nil {.s = newSource()} else {.s.Seed()}}// read implements Read for a lockedSource without a race condition.func ( *lockedSource) ( []byte, *int64, *int8) ( int, error) {.lk.Lock(), = read(, .s, , ).lk.Unlock()return}
![]() |
The pages are generated with Golds v0.7.9-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |