// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Binary to decimal floating point conversion.// Algorithm:// 1) store mantissa in multiprecision decimal// 2) shift decimal by exponent// 3) read digits out & formatpackage strconvimport// TODO: move elsewhere?type floatInfo struct { mantbits uint expbits uint bias int}var float32info = floatInfo{23, 8, -127}var float64info = floatInfo{52, 11, -1023}// FormatFloat converts the floating-point number f to a string,// according to the format fmt and precision prec. It rounds the// result assuming that the original was obtained from a floating-point// value of bitSize bits (32 for float32, 64 for float64).//// The format fmt is one of// - 'b' (-ddddp±ddd, a binary exponent),// - 'e' (-d.dddde±dd, a decimal exponent),// - 'E' (-d.ddddE±dd, a decimal exponent),// - 'f' (-ddd.dddd, no exponent),// - 'g' ('e' for large exponents, 'f' otherwise),// - 'G' ('E' for large exponents, 'f' otherwise),// - 'x' (-0xd.ddddp±ddd, a hexadecimal fraction and binary exponent), or// - 'X' (-0Xd.ddddP±ddd, a hexadecimal fraction and binary exponent).//// The precision prec controls the number of digits (excluding the exponent)// printed by the 'e', 'E', 'f', 'g', 'G', 'x', and 'X' formats.// For 'e', 'E', 'f', 'x', and 'X', it is the number of digits after the decimal point.// For 'g' and 'G' it is the maximum number of significant digits (trailing// zeros are removed).// The special precision -1 uses the smallest number of digits// necessary such that ParseFloat will return f exactly.func ( float64, byte, , int) string {returnstring(genericFtoa(make([]byte, 0, max(+4, 24)), , , , ))}// AppendFloat appends the string form of the floating-point number f,// as generated by [FormatFloat], to dst and returns the extended buffer.func ( []byte, float64, byte, , int) []byte {returngenericFtoa(, , , , )}func genericFtoa( []byte, float64, byte, , int) []byte {varuint64var *floatInfoswitch {case32: = uint64(math.Float32bits(float32())) = &float32infocase64: = math.Float64bits() = &float64infodefault:panic("strconv: illegal AppendFloat/FormatFloat bitSize") } := >>(.expbits+.mantbits) != 0 := int(>>.mantbits) & (1<<.expbits - 1) := & (uint64(1)<<.mantbits - 1)switch {case1<<.expbits - 1:// Inf, NaNvarstringswitch {case != 0: = "NaN"case : = "-Inf"default: = "+Inf" }returnappend(, ...)case0:// denormalized ++default:// add implicit top bit |= uint64(1) << .mantbits } += .bias// Pick off easy binary, hex formats.if == 'b' {returnfmtB(, , , , ) }if == 'x' || == 'X' {returnfmtX(, , , , , , ) }if !optimize {returnbigFtoa(, , , , , , ) }vardecimalSlice := false// Negative precision means "only as much as needed to be exact." := < 0if {// Use Ryu algorithm.var [32]byte .d = [:]ryuFtoaShortest(&, , -int(.mantbits), ) = true// Precision for shortest representation mode.switch {case'e', 'E': = max(.nd-1, 0)case'f': = max(.nd-.dp, 0)case'g', 'G': = .nd } } elseif != 'f' {// Fixed number of digits. := switch {case'e', 'E': ++case'g', 'G':if == 0 { = 1 } = default:// Invalid mode. = 1 }var [24]byteif == 32 && <= 9 { .d = [:]ryuFtoaFixed32(&, uint32(), -int(.mantbits), ) = true } elseif <= 18 { .d = [:]ryuFtoaFixed64(&, , -int(.mantbits), ) = true } }if ! {returnbigFtoa(, , , , , , ) }returnformatDigits(, , , , , )}// bigFtoa uses multiprecision computations to format a float.func bigFtoa( []byte, int, byte, bool, uint64, int, *floatInfo) []byte { := new(decimal) .Assign() .Shift( - int(.mantbits))vardecimalSlice := < 0if {roundShortest(, , , ) = decimalSlice{d: .d[:], nd: .nd, dp: .dp}// Precision for shortest representation mode.switch {case'e', 'E': = .nd - 1case'f': = max(.nd-.dp, 0)case'g', 'G': = .nd } } else {// Round appropriately.switch {case'e', 'E': .Round( + 1)case'f': .Round(.dp + )case'g', 'G':if == 0 { = 1 } .Round() } = decimalSlice{d: .d[:], nd: .nd, dp: .dp} }returnformatDigits(, , , , , )}func formatDigits( []byte, bool, bool, decimalSlice, int, byte) []byte {switch {case'e', 'E':returnfmtE(, , , , )case'f':returnfmtF(, , , )case'g', 'G':// trailing fractional zeros in 'e' form will be trimmed. := if > .nd && .nd >= .dp { = .nd }// %e is used if the exponent from the conversion // is less than -4 or greater than or equal to the precision. // if precision was the shortest possible, use precision 6 for this decision.if { = 6 } := .dp - 1if < -4 || >= {if > .nd { = .nd }returnfmtE(, , , -1, +'e'-'g') }if > .dp { = .nd }returnfmtF(, , , max(-.dp, 0)) }// unknown formatreturnappend(, '%', )}// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits// that will let the original floating point value be precisely reconstructed.func roundShortest( *decimal, uint64, int, *floatInfo) {// If mantissa is zero, the number is zero; stop now.if == 0 { .nd = 0return }// Compute upper and lower such that any decimal number // between upper and lower (possibly inclusive) // will round to the original floating point number.// We may see at once that the number is already shortest. // // Suppose d is not denormal, so that 2^exp <= d < 10^dp. // The closest shorter number is at least 10^(dp-nd) away. // The lower/upper bounds computed below are at distance // at most 2^(exp-mantbits). // // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), // or equivalently log2(10)*(dp-nd) > exp-mantbits. // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). := .bias + 1// minimum possible exponentif > && 332*(.dp-.nd) >= 100*(-int(.mantbits)) {// The number is already shortest.return }// d = mant << (exp - mantbits) // Next highest floating point number is mant+1 << exp-mantbits. // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. := new(decimal) .Assign(*2 + 1) .Shift( - int(.mantbits) - 1)// d = mant << (exp - mantbits) // Next lowest floating point number is mant-1 << exp-mantbits, // unless mant-1 drops the significant bit and exp is not the minimum exp, // in which case the next lowest is mant*2-1 << exp-mantbits-1. // Either way, call it mantlo << explo-mantbits. // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.varuint64varintif > 1<<.mantbits || == { = - 1 = } else { = *2 - 1 = - 1 } := new(decimal) .Assign(*2 + 1) .Shift( - int(.mantbits) - 1)// The upper and lower bounds are possible outputs only if // the original mantissa is even, so that IEEE round-to-even // would round to the original mantissa and not the neighbors. := %2 == 0// As we walk the digits we want to know whether rounding up would fall // within the upper bound. This is tracked by upperdelta: // // If upperdelta == 0, the digits of d and upper are the same so far. // // If upperdelta == 1, we saw a difference of 1 between d and upper on a // previous digit and subsequently only 9s for d and 0s for upper. // (Thus rounding up may fall outside the bound, if it is exclusive.) // // If upperdelta == 2, then the difference is greater than 1 // and we know that rounding up falls within the bound.varuint8// Now we can figure out the minimum number of digits required. // Walk along until d has distinguished itself from upper and lower.for := 0; ; ++ {// lower, d, and upper may have the decimal points at different // places. In this case upper is the longest, so we iterate from // ui==0 and start li and mi at (possibly) -1. := - .dp + .dpif >= .nd {break } := - .dp + .dp := byte('0') // lower digitif >= 0 && < .nd { = .d[] } := byte('0') // middle digitif >= 0 { = .d[] } := byte('0') // upper digitif < .nd { = .d[] }// Okay to round down (truncate) if lower has a different digit // or if lower is inclusive and is exactly the result of rounding // down (i.e., and we have reached the final digit of lower). := != || && +1 == .ndswitch {case == 0 && +1 < :// Example: // m = 12345xxx // u = 12347xxx = 2case == 0 && != :// Example: // m = 12345xxx // u = 12346xxx = 1case == 1 && ( != '9' || != '0'):// Example: // m = 1234598x // u = 1234600x = 2 }// Okay to round up if upper has a different digit and either upper // is inclusive or upper is bigger than the result of rounding up. := > 0 && ( || > 1 || +1 < .nd)// If it's okay to do either, then round to the nearest one. // If it's okay to do only one, do it.switch {case && : .Round( + 1)returncase : .RoundDown( + 1)returncase : .RoundUp( + 1)return } }}type decimalSlice struct { d []byte nd, dp int}// %e: -d.ddddde±ddfunc fmtE( []byte, bool, decimalSlice, int, byte) []byte {// signif { = append(, '-') }// first digit := byte('0')if .nd != 0 { = .d[0] } = append(, )// .moredigitsif > 0 { = append(, '.') := 1 := min(.nd, +1)if < { = append(, .d[:]...) = }for ; <= ; ++ { = append(, '0') } }// e± = append(, ) := .dp - 1if .nd == 0 { // special case: 0 has exponent 0 = 0 }if < 0 { = '-' = - } else { = '+' } = append(, )// dd or dddswitch {case < 10: = append(, '0', byte()+'0')case < 100: = append(, byte(/10)+'0', byte(%10)+'0')default: = append(, byte(/100)+'0', byte(/10)%10+'0', byte(%10)+'0') }return}// %f: -ddddddd.dddddfunc fmtF( []byte, bool, decimalSlice, int) []byte {// signif { = append(, '-') }// integer, padded with zeros as needed.if .dp > 0 { := min(.nd, .dp) = append(, .d[:]...)for ; < .dp; ++ { = append(, '0') } } else { = append(, '0') }// fractionif > 0 { = append(, '.')for := 0; < ; ++ { := byte('0')if := .dp + ; 0 <= && < .nd { = .d[] } = append(, ) } }return}// %b: -ddddddddp±dddfunc fmtB( []byte, bool, uint64, int, *floatInfo) []byte {// signif { = append(, '-') }// mantissa , _ = formatBits(, , 10, false, true)// p = append(, 'p')// ±exponent -= int(.mantbits)if >= 0 { = append(, '+') } , _ = formatBits(, uint64(), 10, < 0, true)return}// %x: -0x1.yyyyyyyyp±ddd or -0x0p+0. (y is hex digit, d is decimal digit)func fmtX( []byte, int, byte, bool, uint64, int, *floatInfo) []byte {if == 0 { = 0 }// Shift digits so leading 1 (if any) is at bit 1<<60. <<= 60 - .mantbitsfor != 0 && &(1<<60) == 0 { <<= 1 -- }// Round if requested.if >= 0 && < 15 { := uint( * 4) := ( << ) & (1<<60 - 1) >>= 60 - if |(&1) > 1<<59 { ++ } <<= 60 - if &(1<<61) != 0 {// Wrapped around. >>= 1 ++ } } := lowerhexif == 'X' { = upperhex }// sign, 0x, leading digitif { = append(, '-') } = append(, '0', , '0'+byte((>>60)&1))// .fraction <<= 4// remove leading 0 or 1if < 0 && != 0 { = append(, '.')for != 0 { = append(, [(>>60)&15]) <<= 4 } } elseif > 0 { = append(, '.')for := 0; < ; ++ { = append(, [(>>60)&15]) <<= 4 } }// p± := byte('P')if == lower() { = 'p' } = append(, )if < 0 { = '-' = - } else { = '+' } = append(, )// dd or ddd or ddddswitch {case < 100: = append(, byte(/10)+'0', byte(%10)+'0')case < 1000: = append(, byte(/100)+'0', byte((/10)%10)+'0', byte(%10)+'0')default: = append(, byte(/1000)+'0', byte(/100)%10+'0', byte((/10)%10)+'0', byte(%10)+'0') }return}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.