// Copyright 2024 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package rsaimport ()// GenerateKey generates a new RSA key pair of the given bit size.// bits must be at least 128.func ( io.Reader, int) (*PrivateKey, error) {if < 128 {returnnil, errors.New("rsa: key too small") }fips140.RecordApproved()if < 2048 || %2 == 1 {fips140.RecordNonApproved() }for { , := randomPrime(, (+1)/2)if != nil {returnnil, } , := randomPrime(, /2)if != nil {returnnil, } , := bigmod.NewModulus()if != nil {returnnil, } , := bigmod.NewModulus()if != nil {returnnil, }if .Nat().ExpandFor().Equal(.Nat()) == 1 {returnnil, errors.New("rsa: generated p == q, random source is broken") } , := bigmod.NewModulusProduct(, )if != nil {returnnil, }if .BitLen() != {returnnil, errors.New("rsa: internal error: modulus size incorrect") } , := bigmod.NewModulusProduct(.Nat().SubOne().Bytes(), .Nat().SubOne().Bytes())if != nil {returnnil, } := bigmod.NewNat().SetUint(65537) , := bigmod.NewNat().InverseVarTime(, )if ! {// This checks that GCD(e, (p-1)(q-1)) = 1, which is equivalent // to checking GCD(e, p-1) = 1 and GCD(e, q-1) = 1 separately in // FIPS 186-5, Appendix A.1.3, steps 4.5 and 5.6.continue }if .ExpandFor().Mul(, ).IsOne() == 0 {returnnil, errors.New("rsa: internal error: e*d != 1 mod φ(N)") }// FIPS 186-5, A.1.1(3) requires checking that d > 2^(nlen / 2). // // The probability of this check failing when d is derived from // (e, p, q) is roughly // // 2^(nlen/2) / 2^nlen = 2^(-nlen/2) // // so less than 2⁻¹²⁸ for keys larger than 256 bits. // // We still need to check to comply with FIPS 186-5, but knowing it has // negligible chance of failure we can defer the check to the end of key // generation and return an error if it fails. See [checkPrivateKey].returnnewPrivateKey(, 65537, , , ) }}// randomPrime returns a random prime number of the given bit size following// the process in FIPS 186-5, Appendix A.1.3.func randomPrime( io.Reader, int) ([]byte, error) {if < 64 {returnnil, errors.New("rsa: prime size must be at least 32-bit") } := make([]byte, (+7)/8)for {if := drbg.ReadWithReader(, ); != nil {returnnil, }if := len()*8 - ; != 0 { [0] >>= }// Don't let the value be too small: set the most significant two bits. // Setting the top two bits, rather than just the top bit, means that // when two of these values are multiplied together, the result isn't // ever one bit short.if := len()*8 - ; < 7 { [0] |= 0b1100_0000 >> } else { [0] |= 0b0000_0001 [1] |= 0b1000_0000 }// Make the value odd since an even number certainly isn't prime. [len()-1] |= 1// We don't need to check for p >= √2 × 2^(bits-1) (steps 4.4 and 5.4) // because we set the top two bits above, so // // p > 2^(bits-1) + 2^(bits-2) = 3⁄2 × 2^(bits-1) > √2 × 2^(bits-1) //// Step 5.5 requires checking that |p - q| > 2^(nlen/2 - 100). // // The probability of |p - q| ≤ k where p and q are uniformly random in // the range (a, b) is 1 - (b-a-k)^2 / (b-a)^2, so the probability of // this check failing during key generation is 2⁻⁹⁷. // // We still need to check to comply with FIPS 186-5, but knowing it has // negligible chance of failure we can defer the check to the end of key // generation and return an error if it fails. See [checkPrivateKey].ifisPrime() {return , nil } }}// isPrime runs the Miller-Rabin Probabilistic Primality Test from// FIPS 186-5, Appendix B.3.1.//// w must be a random odd integer greater than three in big-endian order.// isPrime might return false positives for adversarially chosen values.//// isPrime is not constant-time.func isPrime( []byte) bool { , := millerRabinSetup()if != nil {// w is zero, one, or even.returnfalse } , := bigmod.NewNat().SetBytes(productOfPrimes, .w)// If w is too small for productOfPrimes, key generation is // going to be fast enough anyway.if == nil { , := .InverseVarTime(, .w)if ! {// productOfPrimes doesn't have an inverse mod w, // so w is divisible by at least one of the primes.returnfalse } }// iterations is the number of Miller-Rabin rounds, each with a // randomly-selected base. // // The worst case false positive rate for a single iteration is 1/4 per // https://eprint.iacr.org/2018/749, so if w were selected adversarially, we // would need up to 64 iterations to get to a negligible (2⁻¹²⁸) chance of // false positive. // // However, since this function is only used for randomly-selected w in the // context of RSA key generation, we can use a smaller number of iterations. // The exact number depends on the size of the prime (and the implied // security level). See BoringSSL for the full formula. // https://cs.opensource.google/boringssl/boringssl/+/master:crypto/fipsmodule/bn/prime.c.inc;l=208-283;drc=3a138e43 := .w.BitLen()varintswitch {case >= 3747: = 3case >= 1345: = 4case >= 476: = 5case >= 400: = 6case >= 347: = 7case >= 308: = 8case >= 55: = 27default: = 34 } := make([]byte, (+7)/8)for {drbg.Read()if := len()*8 - ; != 0 { [0] >>= } , := millerRabinIteration(, )if != nil {// b was rejected.continue }if == millerRabinCOMPOSITE {returnfalse } --if == 0 {returntrue } }}// productOfPrimes is the product of the first 74 primes higher than 2.//// The number of primes was selected to be the highest such that the product fit// in 512 bits, so to be usable for 1024 bit RSA keys.//// Higher values cause fewer Miller-Rabin tests of composites (nothing can help// with the final test on the actual prime) but make InverseVarTime take longer.var productOfPrimes = []byte{0x10, 0x6a, 0xa9, 0xfb, 0x76, 0x46, 0xfa, 0x6e, 0xb0, 0x81, 0x3c, 0x28, 0xc5, 0xd5, 0xf0, 0x9f,0x07, 0x7e, 0xc3, 0xba, 0x23, 0x8b, 0xfb, 0x99, 0xc1, 0xb6, 0x31, 0xa2, 0x03, 0xe8, 0x11, 0x87,0x23, 0x3d, 0xb1, 0x17, 0xcb, 0xc3, 0x84, 0x05, 0x6e, 0xf0, 0x46, 0x59, 0xa4, 0xa1, 0x1d, 0xe4,0x9f, 0x7e, 0xcb, 0x29, 0xba, 0xda, 0x8f, 0x98, 0x0d, 0xec, 0xec, 0xe9, 0x2e, 0x30, 0xc4, 0x8f,}type millerRabin struct { w *bigmod.Modulus a uint m []byte}// millerRabinSetup prepares state that's reused across multiple iterations of// the Miller-Rabin test.func millerRabinSetup( []byte) (*millerRabin, error) { := &millerRabin{}// Check that w is odd, and precompute Montgomery parameters. , := bigmod.NewModulus()if != nil {returnnil, }if .Nat().IsOdd() == 0 {returnnil, errors.New("candidate is even") } .w = // Compute m = (w-1)/2^a, where m is odd. := .w.Nat().SubOne(.w)if .IsZero() == 1 {returnnil, errors.New("candidate is one") } .a = .TrailingZeroBitsVarTime()// Store mr.m as a big-endian byte slice with leading zero bytes removed, // for use with [bigmod.Nat.Exp]. := .ShiftRightVarTime(.a) .m = .Bytes(.w)for .m[0] == 0 { .m = .m[1:] }return , nil}const millerRabinCOMPOSITE = falseconst millerRabinPOSSIBLYPRIME = truefunc millerRabinIteration( *millerRabin, []byte) (bool, error) {// Reject b ≤ 1 or b ≥ w − 1.iflen() != (.w.BitLen()+7)/8 {returnfalse, errors.New("incorrect length") } := bigmod.NewNat()if , := .SetBytes(, .w); != nil {returnfalse, }if .IsZero() == 1 || .IsOne() == 1 || .IsMinusOne(.w) == 1 {returnfalse, errors.New("out-of-range candidate") }// Compute b^(m*2^i) mod w for successive i. // If b^m mod w = 1, b is a possible prime. // If b^(m*2^i) mod w = -1 for some 0 <= i < a, b is a possible prime. // Otherwise b is composite.// Start by computing and checking b^m mod w (also the i = 0 case). := bigmod.NewNat().Exp(, .m, .w)if .IsOne() == 1 || .IsMinusOne(.w) == 1 {returnmillerRabinPOSSIBLYPRIME, nil }// Check b^(m*2^i) mod w = -1 for 0 < i < a.forrange .a - 1 { .Mul(, .w)if .IsMinusOne(.w) == 1 {returnmillerRabinPOSSIBLYPRIME, nil }if .IsOne() == 1 {// Future squaring will not turn z == 1 into -1.break } }returnmillerRabinCOMPOSITE, nil}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.