// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package mlkem768 implements the quantum-resistant key encapsulation method // ML-KEM (formerly known as Kyber). // // Only the recommended ML-KEM-768 parameter set is provided. // // The version currently implemented is the one specified by [NIST FIPS 203 ipd], // with the unintentional transposition of the matrix A reverted to match the // behavior of [Kyber version 3.0]. Future versions of this package might // introduce backwards incompatible changes to implement changes to FIPS 203. // // [Kyber version 3.0]: https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf // [NIST FIPS 203 ipd]: https://doi.org/10.6028/NIST.FIPS.203.ipd
package mlkem768 // This package targets security, correctness, simplicity, readability, and // reviewability as its primary goals. All critical operations are performed in // constant time. // // Variable and function names, as well as code layout, are selected to // facilitate reviewing the implementation against the NIST FIPS 203 ipd // document. // // Reviewers unfamiliar with polynomials or linear algebra might find the // background at https://words.filippo.io/kyber-math/ useful. import ( ) const ( // ML-KEM global constants. n = 256 q = 3329 log2q = 12 // ML-KEM-768 parameters. The code makes assumptions based on these values, // they can't be changed blindly. k = 3 η = 2 du = 10 dv = 4 // encodingSizeX is the byte size of a ringElement or nttElement encoded // by ByteEncode_X (FIPS 203 (DRAFT), Algorithm 4). encodingSize12 = n * log2q / 8 encodingSize10 = n * du / 8 encodingSize4 = n * dv / 8 encodingSize1 = n * 1 / 8 messageSize = encodingSize1 decryptionKeySize = k * encodingSize12 encryptionKeySize = k*encodingSize12 + 32 CiphertextSize = k*encodingSize10 + encodingSize4 EncapsulationKeySize = encryptionKeySize DecapsulationKeySize = decryptionKeySize + encryptionKeySize + 32 + 32 SharedKeySize = 32 SeedSize = 32 + 32 ) // A DecapsulationKey is the secret key used to decapsulate a shared key from a // ciphertext. It includes various precomputed values. type DecapsulationKey struct { dk [DecapsulationKeySize]byte encryptionKey decryptionKey } // Bytes returns the extended encoding of the decapsulation key, according to // FIPS 203 (DRAFT). func ( *DecapsulationKey) () []byte { var [DecapsulationKeySize]byte copy([:], .dk[:]) return [:] } // EncapsulationKey returns the public encapsulation key necessary to produce // ciphertexts. func ( *DecapsulationKey) () []byte { var [EncapsulationKeySize]byte copy([:], .dk[decryptionKeySize:]) return [:] } // encryptionKey is the parsed and expanded form of a PKE encryption key. type encryptionKey struct { t [k]nttElement // ByteDecode₁₂(ek[:384k]) A [k * k]nttElement // A[i*k+j] = sampleNTT(ρ, j, i) } // decryptionKey is the parsed and expanded form of a PKE decryption key. type decryptionKey struct { s [k]nttElement // ByteDecode₁₂(dk[:decryptionKeySize]) } // GenerateKey generates a new decapsulation key, drawing random bytes from // crypto/rand. The decapsulation key must be kept secret. func () (*DecapsulationKey, error) { // The actual logic is in a separate function to outline this allocation. := &DecapsulationKey{} return generateKey() } func generateKey( *DecapsulationKey) (*DecapsulationKey, error) { var [32]byte if , := rand.Read([:]); != nil { return nil, errors.New("mlkem768: crypto/rand Read failed: " + .Error()) } var [32]byte if , := rand.Read([:]); != nil { return nil, errors.New("mlkem768: crypto/rand Read failed: " + .Error()) } return kemKeyGen(, &, &), nil } // NewKeyFromSeed deterministically generates a decapsulation key from a 64-byte // seed in the "d || z" form. The seed must be uniformly random. func ( []byte) (*DecapsulationKey, error) { // The actual logic is in a separate function to outline this allocation. := &DecapsulationKey{} return newKeyFromSeed(, ) } func newKeyFromSeed( *DecapsulationKey, []byte) (*DecapsulationKey, error) { if len() != SeedSize { return nil, errors.New("mlkem768: invalid seed length") } := (*[32]byte)([:32]) := (*[32]byte)([32:]) return kemKeyGen(, , ), nil } // NewKeyFromExtendedEncoding parses a decapsulation key from its FIPS 203 // (DRAFT) extended encoding. func ( []byte) (*DecapsulationKey, error) { // The actual logic is in a separate function to outline this allocation. := &DecapsulationKey{} return newKeyFromExtendedEncoding(, ) } func newKeyFromExtendedEncoding( *DecapsulationKey, []byte) (*DecapsulationKey, error) { if len() != DecapsulationKeySize { return nil, errors.New("mlkem768: invalid decapsulation key length") } // Note that we don't check that H(ek) matches ekPKE, as that's not // specified in FIPS 203 (DRAFT). This is one reason to prefer the seed // private key format. .dk = [DecapsulationKeySize]byte() := [:decryptionKeySize] if := parseDK(&.decryptionKey, ); != nil { return nil, } := [decryptionKeySize : decryptionKeySize+encryptionKeySize] if := parseEK(&.encryptionKey, ); != nil { return nil, } return , nil } // kemKeyGen generates a decapsulation key. // // It implements ML-KEM.KeyGen according to FIPS 203 (DRAFT), Algorithm 15, and // K-PKE.KeyGen according to FIPS 203 (DRAFT), Algorithm 12. The two are merged // to save copies and allocations. func kemKeyGen( *DecapsulationKey, , *[32]byte) *DecapsulationKey { if == nil { = &DecapsulationKey{} } := sha3.Sum512([:]) , := [:32], [32:] := &.A for := byte(0); < k; ++ { for := byte(0); < k; ++ { // Note that this is consistent with Kyber round 3, rather than with // the initial draft of FIPS 203, because NIST signaled that the // change was involuntary and will be reverted. [*k+] = sampleNTT(, , ) } } var byte := &.s for := range { [] = ntt(samplePolyCBD(, )) ++ } := make([]nttElement, k) for := range { [] = ntt(samplePolyCBD(, )) ++ } := &.t for := range { // t = A ◦ s + e [] = [] for := range { [] = polyAdd([], nttMul([*k+], [])) } } // dkPKE ← ByteEncode₁₂(s) // ekPKE ← ByteEncode₁₂(t) || ρ // ek ← ekPKE // dk ← dkPKE || ek || H(ek) || z := .dk[:0] for := range { = polyByteEncode(, []) } for := range { = polyByteEncode(, []) } = append(, ...) := sha3.New256() .Write([decryptionKeySize:]) = .Sum() = append(, [:]...) if len() != len(.dk) { panic("mlkem768: internal error: invalid decapsulation key size") } return } // Encapsulate generates a shared key and an associated ciphertext from an // encapsulation key, drawing random bytes from crypto/rand. // If the encapsulation key is not valid, Encapsulate returns an error. // // The shared key must be kept secret. func ( []byte) (, []byte, error) { // The actual logic is in a separate function to outline this allocation. var [CiphertextSize]byte return encapsulate(&, ) } func encapsulate( *[CiphertextSize]byte, []byte) (, []byte, error) { if len() != EncapsulationKeySize { return nil, nil, errors.New("mlkem768: invalid encapsulation key length") } var [messageSize]byte if , := rand.Read([:]); != nil { return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + .Error()) } return kemEncaps(, , &) } // kemEncaps generates a shared key and an associated ciphertext. // // It implements ML-KEM.Encaps according to FIPS 203 (DRAFT), Algorithm 16. func kemEncaps( *[CiphertextSize]byte, []byte, *[messageSize]byte) (, []byte, error) { if == nil { = &[CiphertextSize]byte{} } := sha3.Sum256([:]) := sha3.New512() .Write([:]) .Write([:]) := .Sum(nil) , := [:SharedKeySize], [SharedKeySize:] var encryptionKey if := parseEK(&, [:]); != nil { return nil, nil, } = pkeEncrypt(, &, , ) return , , nil } // parseEK parses an encryption key from its encoded form. // // It implements the initial stages of K-PKE.Encrypt according to FIPS 203 // (DRAFT), Algorithm 13. func parseEK( *encryptionKey, []byte) error { if len() != encryptionKeySize { return errors.New("mlkem768: invalid encryption key length") } for := range .t { var error .t[], = polyByteDecode[nttElement]([:encodingSize12]) if != nil { return } = [encodingSize12:] } := for := byte(0); < k; ++ { for := byte(0); < k; ++ { // See the note in pkeKeyGen about the order of the indices being // consistent with Kyber round 3. .A[*k+] = sampleNTT(, , ) } } return nil } // pkeEncrypt encrypt a plaintext message. // // It implements K-PKE.Encrypt according to FIPS 203 (DRAFT), Algorithm 13, // although the computation of t and AT is done in parseEK. func pkeEncrypt( *[CiphertextSize]byte, *encryptionKey, *[messageSize]byte, []byte) []byte { var byte , := make([]nttElement, k), make([]ringElement, k) for := range { [] = ntt(samplePolyCBD(, )) ++ } for := range { [] = samplePolyCBD(, ) ++ } := samplePolyCBD(, ) := make([]ringElement, k) // NTT⁻¹(AT ◦ r) + e1 for := range { [] = [] for := range { // Note that i and j are inverted, as we need the transposed of A. [] = polyAdd([], inverseNTT(nttMul(.A[*k+], []))) } } := ringDecodeAndDecompress1() var nttElement // t⊺ ◦ r for := range .t { = polyAdd(, nttMul(.t[], [])) } := polyAdd(polyAdd(inverseNTT(), ), ) := [:0] for , := range { = ringCompressAndEncode10(, ) } = ringCompressAndEncode4(, ) return } // Decapsulate generates a shared key from a ciphertext and a decapsulation key. // If the ciphertext is not valid, Decapsulate returns an error. // // The shared key must be kept secret. func ( *DecapsulationKey, []byte) ( []byte, error) { if len() != CiphertextSize { return nil, errors.New("mlkem768: invalid ciphertext length") } := (*[CiphertextSize]byte)() return kemDecaps(, ), nil } // kemDecaps produces a shared key from a ciphertext. // // It implements ML-KEM.Decaps according to FIPS 203 (DRAFT), Algorithm 17. func kemDecaps( *DecapsulationKey, *[CiphertextSize]byte) ( []byte) { := .dk[decryptionKeySize+encryptionKeySize : decryptionKeySize+encryptionKeySize+32] := .dk[decryptionKeySize+encryptionKeySize+32:] := pkeDecrypt(&.decryptionKey, ) := sha3.New512() .Write([:]) .Write() := .Sum(nil) , := [:SharedKeySize], [SharedKeySize:] := sha3.NewShake256() .Write() .Write([:]) := make([]byte, SharedKeySize) .Read() var [CiphertextSize]byte := pkeEncrypt(&, &.encryptionKey, (*[32]byte)(), ) subtle.ConstantTimeCopy(subtle.ConstantTimeCompare([:], ), , ) return } // parseDK parses a decryption key from its encoded form. // // It implements the computation of s from K-PKE.Decrypt according to FIPS 203 // (DRAFT), Algorithm 14. func parseDK( *decryptionKey, []byte) error { if len() != decryptionKeySize { return errors.New("mlkem768: invalid decryption key length") } for := range .s { , := polyByteDecode[nttElement]([:encodingSize12]) if != nil { return } .s[] = = [encodingSize12:] } return nil } // pkeDecrypt decrypts a ciphertext. // // It implements K-PKE.Decrypt according to FIPS 203 (DRAFT), Algorithm 14, // although the computation of s is done in parseDK. func pkeDecrypt( *decryptionKey, *[CiphertextSize]byte) []byte { := make([]ringElement, k) for := range { := (*[encodingSize10]byte)([encodingSize10* : encodingSize10*(+1)]) [] = ringDecodeAndDecompress10() } := (*[encodingSize4]byte)([encodingSize10*k:]) := ringDecodeAndDecompress4() var nttElement // s⊺ ◦ NTT(u) for := range .s { = polyAdd(, nttMul(.s[], ntt([]))) } := polySub(, inverseNTT()) return ringCompressAndEncode1(nil, ) } // fieldElement is an integer modulo q, an element of ℤ_q. It is always reduced. type fieldElement uint16 // fieldCheckReduced checks that a value a is < q. func fieldCheckReduced( uint16) (fieldElement, error) { if >= q { return 0, errors.New("unreduced field element") } return fieldElement(), nil } // fieldReduceOnce reduces a value a < 2q. func fieldReduceOnce( uint16) fieldElement { := - q // If x underflowed, then x >= 2¹⁶ - q > 2¹⁵, so the top bit is set. += ( >> 15) * q return fieldElement() } func fieldAdd(, fieldElement) fieldElement { := uint16( + ) return fieldReduceOnce() } func fieldSub(, fieldElement) fieldElement { := uint16( - + q) return fieldReduceOnce() } const ( barrettMultiplier = 5039 // 2¹² * 2¹² / q barrettShift = 24 // log₂(2¹² * 2¹²) ) // fieldReduce reduces a value a < 2q² using Barrett reduction, to avoid // potentially variable-time division. func fieldReduce( uint32) fieldElement { := uint32((uint64() * barrettMultiplier) >> barrettShift) return fieldReduceOnce(uint16( - *q)) } func fieldMul(, fieldElement) fieldElement { := uint32() * uint32() return fieldReduce() } // fieldMulSub returns a * (b - c). This operation is fused to save a // fieldReduceOnce after the subtraction. func fieldMulSub(, , fieldElement) fieldElement { := uint32() * uint32(-+q) return fieldReduce() } // fieldAddMul returns a * b + c * d. This operation is fused to save a // fieldReduceOnce and a fieldReduce. func fieldAddMul(, , , fieldElement) fieldElement { := uint32() * uint32() += uint32() * uint32() return fieldReduce() } // compress maps a field element uniformly to the range 0 to 2ᵈ-1, according to // FIPS 203 (DRAFT), Definition 4.5. func compress( fieldElement, uint8) uint16 { // We want to compute (x * 2ᵈ) / q, rounded to nearest integer, with 1/2 // rounding up (see FIPS 203 (DRAFT), Section 2.3). // Barrett reduction produces a quotient and a remainder in the range [0, 2q), // such that dividend = quotient * q + remainder. := uint32() << // x * 2ᵈ := uint32(uint64() * barrettMultiplier >> barrettShift) := - *q // Since the remainder is in the range [0, 2q), not [0, q), we need to // portion it into three spans for rounding. // // [ 0, q/2 ) -> round to 0 // [ q/2, q + q/2 ) -> round to 1 // [ q + q/2, 2q ) -> round to 2 // // We can convert that to the following logic: add 1 if remainder > q/2, // then add 1 again if remainder > q + q/2. // // Note that if remainder > x, then ⌊x⌋ - remainder underflows, and the top // bit of the difference will be set. += (q/2 - ) >> 31 & 1 += (q + q/2 - ) >> 31 & 1 // quotient might have overflowed at this point, so reduce it by masking. var uint32 = (1 << ) - 1 return uint16( & ) } // decompress maps a number x between 0 and 2ᵈ-1 uniformly to the full range of // field elements, according to FIPS 203 (DRAFT), Definition 4.6. func decompress( uint16, uint8) fieldElement { // We want to compute (y * q) / 2ᵈ, rounded to nearest integer, with 1/2 // rounding up (see FIPS 203 (DRAFT), Section 2.3). := uint32() * q := >> // (y * q) / 2ᵈ // The d'th least-significant bit of the dividend (the most significant bit // of the remainder) is 1 for the top half of the values that divide to the // same quotient, which are the ones that round up. += >> ( - 1) & 1 // quotient is at most (2¹¹-1) * q / 2¹¹ + 1 = 3328, so it didn't overflow. return fieldElement() } // ringElement is a polynomial, an element of R_q, represented as an array // according to FIPS 203 (DRAFT), Section 2.4. type ringElement [n]fieldElement // polyAdd adds two ringElements or nttElements. func polyAdd[ ~[n]fieldElement](, ) ( ) { for := range { [] = fieldAdd([], []) } return } // polySub subtracts two ringElements or nttElements. func polySub[ ~[n]fieldElement](, ) ( ) { for := range { [] = fieldSub([], []) } return } // polyByteEncode appends the 384-byte encoding of f to b. // // It implements ByteEncode₁₂, according to FIPS 203 (DRAFT), Algorithm 4. func polyByteEncode[ ~[n]fieldElement]( []byte, ) []byte { , := sliceForAppend(, encodingSize12) for := 0; < n; += 2 { := uint32([]) | uint32([+1])<<12 [0] = uint8() [1] = uint8( >> 8) [2] = uint8( >> 16) = [3:] } return } // polyByteDecode decodes the 384-byte encoding of a polynomial, checking that // all the coefficients are properly reduced. This achieves the "Modulus check" // step of ML-KEM Encapsulation Input Validation. // // polyByteDecode is also used in ML-KEM Decapsulation, where the input // validation is not required, but implicitly allowed by the specification. // // It implements ByteDecode₁₂, according to FIPS 203 (DRAFT), Algorithm 5. func polyByteDecode[ ~[n]fieldElement]( []byte) (, error) { if len() != encodingSize12 { return {}, errors.New("mlkem768: invalid encoding length") } var for := 0; < n; += 2 { := uint32([0]) | uint32([1])<<8 | uint32([2])<<16 const = 0b1111_1111_1111 var error if [], = fieldCheckReduced(uint16( & )); != nil { return {}, errors.New("mlkem768: invalid polynomial encoding") } if [+1], = fieldCheckReduced(uint16( >> 12)); != nil { return {}, errors.New("mlkem768: invalid polynomial encoding") } = [3:] } return , nil } // sliceForAppend takes a slice and a requested number of bytes. It returns a // slice with the contents of the given slice followed by that many bytes and a // second slice that aliases into it and contains only the extra bytes. If the // original slice has sufficient capacity then no allocation is performed. func sliceForAppend( []byte, int) (, []byte) { if := len() + ; cap() >= { = [:] } else { = make([]byte, ) copy(, ) } = [len():] return } // ringCompressAndEncode1 appends a 32-byte encoding of a ring element to s, // compressing one coefficients per bit. // // It implements Compress₁, according to FIPS 203 (DRAFT), Definition 4.5, // followed by ByteEncode₁, according to FIPS 203 (DRAFT), Algorithm 4. func ringCompressAndEncode1( []byte, ringElement) []byte { , := sliceForAppend(, encodingSize1) for := range { [] = 0 } for := range { [/8] |= uint8(compress([], 1) << ( % 8)) } return } // ringDecodeAndDecompress1 decodes a 32-byte slice to a ring element where each // bit is mapped to 0 or ⌈q/2⌋. // // It implements ByteDecode₁, according to FIPS 203 (DRAFT), Algorithm 5, // followed by Decompress₁, according to FIPS 203 (DRAFT), Definition 4.6. func ringDecodeAndDecompress1( *[encodingSize1]byte) ringElement { var ringElement for := range { := [/8] >> ( % 8) & 1 const = (q + 1) / 2 // ⌈q/2⌋, rounded up per FIPS 203 (DRAFT), Section 2.3 [] = fieldElement() * // 0 decompresses to 0, and 1 to ⌈q/2⌋ } return } // ringCompressAndEncode4 appends a 128-byte encoding of a ring element to s, // compressing two coefficients per byte. // // It implements Compress₄, according to FIPS 203 (DRAFT), Definition 4.5, // followed by ByteEncode₄, according to FIPS 203 (DRAFT), Algorithm 4. func ringCompressAndEncode4( []byte, ringElement) []byte { , := sliceForAppend(, encodingSize4) for := 0; < n; += 2 { [/2] = uint8(compress([], 4) | compress([+1], 4)<<4) } return } // ringDecodeAndDecompress4 decodes a 128-byte encoding of a ring element where // each four bits are mapped to an equidistant distribution. // // It implements ByteDecode₄, according to FIPS 203 (DRAFT), Algorithm 5, // followed by Decompress₄, according to FIPS 203 (DRAFT), Definition 4.6. func ringDecodeAndDecompress4( *[encodingSize4]byte) ringElement { var ringElement for := 0; < n; += 2 { [] = fieldElement(decompress(uint16([/2]&0b1111), 4)) [+1] = fieldElement(decompress(uint16([/2]>>4), 4)) } return } // ringCompressAndEncode10 appends a 320-byte encoding of a ring element to s, // compressing four coefficients per five bytes. // // It implements Compress₁₀, according to FIPS 203 (DRAFT), Definition 4.5, // followed by ByteEncode₁₀, according to FIPS 203 (DRAFT), Algorithm 4. func ringCompressAndEncode10( []byte, ringElement) []byte { , := sliceForAppend(, encodingSize10) for := 0; < n; += 4 { var uint64 |= uint64(compress([+0], 10)) |= uint64(compress([+1], 10)) << 10 |= uint64(compress([+2], 10)) << 20 |= uint64(compress([+3], 10)) << 30 [0] = uint8() [1] = uint8( >> 8) [2] = uint8( >> 16) [3] = uint8( >> 24) [4] = uint8( >> 32) = [5:] } return } // ringDecodeAndDecompress10 decodes a 320-byte encoding of a ring element where // each ten bits are mapped to an equidistant distribution. // // It implements ByteDecode₁₀, according to FIPS 203 (DRAFT), Algorithm 5, // followed by Decompress₁₀, according to FIPS 203 (DRAFT), Definition 4.6. func ringDecodeAndDecompress10( *[encodingSize10]byte) ringElement { := [:] var ringElement for := 0; < n; += 4 { := uint64([0]) | uint64([1])<<8 | uint64([2])<<16 | uint64([3])<<24 | uint64([4])<<32 = [5:] [] = fieldElement(decompress(uint16(>>0&0b11_1111_1111), 10)) [+1] = fieldElement(decompress(uint16(>>10&0b11_1111_1111), 10)) [+2] = fieldElement(decompress(uint16(>>20&0b11_1111_1111), 10)) [+3] = fieldElement(decompress(uint16(>>30&0b11_1111_1111), 10)) } return } // samplePolyCBD draws a ringElement from the special Dη distribution given a // stream of random bytes generated by the PRF function, according to FIPS 203 // (DRAFT), Algorithm 7 and Definition 4.1. func samplePolyCBD( []byte, byte) ringElement { := sha3.NewShake256() .Write() .Write([]byte{}) := make([]byte, 128) .Read() // SamplePolyCBD simply draws four (2η) bits for each coefficient, and adds // the first two and subtracts the last two. var ringElement for := 0; < n; += 2 { := [/2] , , , := >>7, >>6&1, >>5&1, >>4&1 , , , := >>3&1, >>2&1, >>1&1, &1 [] = fieldSub(fieldElement(+), fieldElement(+)) [+1] = fieldSub(fieldElement(+), fieldElement(+)) } return } // nttElement is an NTT representation, an element of T_q, represented as an // array according to FIPS 203 (DRAFT), Section 2.4. type nttElement [n]fieldElement // gammas are the values ζ^2BitRev7(i)+1 mod q for each index i. var gammas = [128]fieldElement{17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, 2110, 1219, 2935, 394, 885, 2444, 2154, 1175} // nttMul multiplies two nttElements. // // It implements MultiplyNTTs, according to FIPS 203 (DRAFT), Algorithm 10. func nttMul(, nttElement) nttElement { var nttElement // We use i += 2 for bounds check elimination. See https://go.dev/issue/66826. for := 0; < 256; += 2 { , := [], [+1] , := [], [+1] [] = fieldAddMul(, , fieldMul(, ), gammas[/2]) [+1] = fieldAddMul(, , , ) } return } // zetas are the values ζ^BitRev7(k) mod q for each index k. var zetas = [128]fieldElement{1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, 2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, 1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, 2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100, 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641, 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757, 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154} // ntt maps a ringElement to its nttElement representation. // // It implements NTT, according to FIPS 203 (DRAFT), Algorithm 8. func ntt( ringElement) nttElement { := 1 for := 128; >= 2; /= 2 { for := 0; < 256; += 2 * { := zetas[] ++ // Bounds check elimination hint. , := [:+], [+:++] for := 0; < ; ++ { := fieldMul(, []) [] = fieldSub([], ) [] = fieldAdd([], ) } } } return nttElement() } // inverseNTT maps a nttElement back to the ringElement it represents. // // It implements NTT⁻¹, according to FIPS 203 (DRAFT), Algorithm 9. func inverseNTT( nttElement) ringElement { := 127 for := 2; <= 128; *= 2 { for := 0; < 256; += 2 * { := zetas[] -- // Bounds check elimination hint. , := [:+], [+:++] for := 0; < ; ++ { := [] [] = fieldAdd(, []) [] = fieldMulSub(, [], ) } } } for := range { [] = fieldMul([], 3303) // 3303 = 128⁻¹ mod q } return ringElement() } // sampleNTT draws a uniformly random nttElement from a stream of uniformly // random bytes generated by the XOF function, according to FIPS 203 (DRAFT), // Algorithm 6 and Definition 4.2. func sampleNTT( []byte, , byte) nttElement { := sha3.NewShake128() .Write() .Write([]byte{, }) // SampleNTT essentially draws 12 bits at a time from r, interprets them in // little-endian, and rejects values higher than q, until it drew 256 // values. (The rejection rate is approximately 19%.) // // To do this from a bytes stream, it draws three bytes at a time, and // splits them into two uint16 appropriately masked. // // r₀ r₁ r₂ // |- - - - - - - -|- - - - - - - -|- - - - - - - -| // // Uint16(r₀ || r₁) // |- - - - - - - - - - - - - - - -| // |- - - - - - - - - - - -| // d₁ // // Uint16(r₁ || r₂) // |- - - - - - - - - - - - - - - -| // |- - - - - - - - - - - -| // d₂ // // Note that in little-endian, the rightmost bits are the most significant // bits (dropped with a mask) and the leftmost bits are the least // significant bits (dropped with a right shift). var nttElement var int // index into a var [24]byte // buffered reads from B := len() // index into buf, starts in a "buffer fully consumed" state for { if >= len() { .Read([:]) = 0 } := byteorder.LeUint16([:]) & 0b1111_1111_1111 := byteorder.LeUint16([+1:]) >> 4 += 3 if < q { [] = fieldElement() ++ } if >= len() { break } if < q { [] = fieldElement() ++ } if >= len() { break } } return }