Source File
pkcs1v15.go
Belonging Package
crypto/rsa
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rsa
import (
)
// This file implements encryption and decryption using PKCS #1 v1.5 padding.
// PKCS1v15DecryptOptions is for passing options to PKCS #1 v1.5 decryption using
// the [crypto.Decrypter] interface.
type PKCS1v15DecryptOptions struct {
// SessionKeyLen is the length of the session key that is being
// decrypted. If not zero, then a padding error during decryption will
// cause a random plaintext of this length to be returned rather than
// an error. These alternatives happen in constant time.
SessionKeyLen int
}
// EncryptPKCS1v15 encrypts the given message with RSA and the padding
// scheme from PKCS #1 v1.5. The message must be no longer than the
// length of the public modulus minus 11 bytes.
//
// The random parameter is used as a source of entropy to ensure that
// encrypting the same message twice doesn't result in the same
// ciphertext. Most applications should use [crypto/rand.Reader]
// as random. Note that the returned ciphertext does not depend
// deterministically on the bytes read from random, and may change
// between calls and/or between versions.
//
// WARNING: use of this function to encrypt plaintexts other than
// session keys is dangerous. Use RSA OAEP in new protocols.
func ( io.Reader, *PublicKey, []byte) ([]byte, error) {
if fips140only.Enabled {
return nil, errors.New("crypto/rsa: use of PKCS#1 v1.5 encryption is not allowed in FIPS 140-only mode")
}
if := checkPublicKeySize(); != nil {
return nil,
}
randutil.MaybeReadByte()
:= .Size()
if len() > -11 {
return nil, ErrMessageTooLong
}
if boring.Enabled && == boring.RandReader {
, := boringPublicKey()
if != nil {
return nil,
}
return boring.EncryptRSAPKCS1(, )
}
boring.UnreachableExceptTests()
// EM = 0x00 || 0x02 || PS || 0x00 || M
:= make([]byte, )
[1] = 2
, := [2:len()-len()-1], [len()-len():]
:= nonZeroRandomBytes(, )
if != nil {
return nil,
}
[len()-len()-1] = 0
copy(, )
if boring.Enabled {
var *boring.PublicKeyRSA
, = boringPublicKey()
if != nil {
return nil,
}
return boring.EncryptRSANoPadding(, )
}
, := fipsPublicKey()
if != nil {
return nil,
}
return rsa.Encrypt(, )
}
// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
// The random parameter is legacy and ignored, and it can be nil.
//
// Note that whether this function returns an error or not discloses secret
// information. If an attacker can cause this function to run repeatedly and
// learn whether each instance returned an error then they can decrypt and
// forge signatures as if they had the private key. See
// DecryptPKCS1v15SessionKey for a way of solving this problem.
func ( io.Reader, *PrivateKey, []byte) ([]byte, error) {
if := checkPublicKeySize(&.PublicKey); != nil {
return nil,
}
if boring.Enabled {
, := boringPrivateKey()
if != nil {
return nil,
}
, := boring.DecryptRSAPKCS1(, )
if != nil {
return nil, ErrDecryption
}
return , nil
}
, , , := decryptPKCS1v15(, )
if != nil {
return nil,
}
if == 0 {
return nil, ErrDecryption
}
return [:], nil
}
// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding
// scheme from PKCS #1 v1.5. The random parameter is legacy and ignored, and it
// can be nil.
//
// DecryptPKCS1v15SessionKey returns an error if the ciphertext is the wrong
// length or if the ciphertext is greater than the public modulus. Otherwise, no
// error is returned. If the padding is valid, the resulting plaintext message
// is copied into key. Otherwise, key is unchanged. These alternatives occur in
// constant time. It is intended that the user of this function generate a
// random session key beforehand and continue the protocol with the resulting
// value.
//
// Note that if the session key is too small then it may be possible for an
// attacker to brute-force it. If they can do that then they can learn whether a
// random value was used (because it'll be different for the same ciphertext)
// and thus whether the padding was correct. This also defeats the point of this
// function. Using at least a 16-byte key will protect against this attack.
//
// This method implements protections against Bleichenbacher chosen ciphertext
// attacks [0] described in RFC 3218 Section 2.3.2 [1]. While these protections
// make a Bleichenbacher attack significantly more difficult, the protections
// are only effective if the rest of the protocol which uses
// DecryptPKCS1v15SessionKey is designed with these considerations in mind. In
// particular, if any subsequent operations which use the decrypted session key
// leak any information about the key (e.g. whether it is a static or random
// key) then the mitigations are defeated. This method must be used extremely
// carefully, and typically should only be used when absolutely necessary for
// compatibility with an existing protocol (such as TLS) that is designed with
// these properties in mind.
//
// - [0] “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption
// Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology (Crypto '98)
// - [1] RFC 3218, Preventing the Million Message Attack on CMS,
// https://www.rfc-editor.org/rfc/rfc3218.html
func ( io.Reader, *PrivateKey, []byte, []byte) error {
if := checkPublicKeySize(&.PublicKey); != nil {
return
}
:= .Size()
if -(len()+3+8) < 0 {
return ErrDecryption
}
, , , := decryptPKCS1v15(, )
if != nil {
return
}
if len() != {
// This should be impossible because decryptPKCS1v15 always
// returns the full slice.
return ErrDecryption
}
&= subtle.ConstantTimeEq(int32(len()-), int32(len()))
subtle.ConstantTimeCopy(, , [len()-len():])
return nil
}
// decryptPKCS1v15 decrypts ciphertext using priv. It returns one or zero in
// valid that indicates whether the plaintext was correctly structured.
// In either case, the plaintext is returned in em so that it may be read
// independently of whether it was valid in order to maintain constant memory
// access patterns. If the plaintext was valid then index contains the index of
// the original message in em, to allow constant time padding removal.
func decryptPKCS1v15( *PrivateKey, []byte) ( int, []byte, int, error) {
if fips140only.Enabled {
return 0, nil, 0, errors.New("crypto/rsa: use of PKCS#1 v1.5 encryption is not allowed in FIPS 140-only mode")
}
:= .Size()
if < 11 {
= ErrDecryption
return 0, nil, 0,
}
if boring.Enabled {
var *boring.PrivateKeyRSA
, = boringPrivateKey()
if != nil {
return 0, nil, 0,
}
, = boring.DecryptRSANoPadding(, )
if != nil {
return 0, nil, 0, ErrDecryption
}
} else {
, := fipsPrivateKey()
if != nil {
return 0, nil, 0,
}
, = rsa.DecryptWithoutCheck(, )
if != nil {
return 0, nil, 0, ErrDecryption
}
}
:= subtle.ConstantTimeByteEq([0], 0)
:= subtle.ConstantTimeByteEq([1], 2)
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// lookingForIndex: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
:= 1
for := 2; < len(); ++ {
:= subtle.ConstantTimeByteEq([], 0)
= subtle.ConstantTimeSelect(&, , )
= subtle.ConstantTimeSelect(, 0, )
}
// The PS padding must be at least 8 bytes long, and it starts two
// bytes into em.
:= subtle.ConstantTimeLessOrEq(2+8, )
= & & (^ & 1) &
= subtle.ConstantTimeSelect(, +1, 0)
return , , , nil
}
// nonZeroRandomBytes fills the given slice with non-zero random octets.
func nonZeroRandomBytes( []byte, io.Reader) ( error) {
_, = io.ReadFull(, )
if != nil {
return
}
for := 0; < len(); ++ {
for [] == 0 {
_, = io.ReadFull(, [:+1])
if != nil {
return
}
// In tests, the PRNG may return all zeros so we do
// this to break the loop.
[] ^= 0x42
}
}
return
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |