// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. // // RSA is a single, fundamental operation that is used in this package to // implement either public-key encryption or public-key signatures. // // The original specification for encryption and signatures with RSA is PKCS #1 // and the terms "RSA encryption" and "RSA signatures" by default refer to // PKCS #1 version 1.5. However, that specification has flaws and new designs // should use version 2, usually called by just OAEP and PSS, where // possible. // // Two sets of interfaces are included in this package. When a more abstract // interface isn't necessary, there are functions for encrypting/decrypting // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract // over the public key primitive, the PrivateKey type implements the // Decrypter and Signer interfaces from the crypto package. // // Operations involving private keys are implemented using constant-time // algorithms, except for [GenerateKey] and for some operations involving // deprecated multi-prime keys. // // # Minimum key size // // [GenerateKey] returns an error if a key of less than 1024 bits is requested, // and all Sign, Verify, Encrypt, and Decrypt methods return an error if used // with a key smaller than 1024 bits. Such keys are insecure and should not be // used. // // The `rsa1024min=0` GODEBUG setting suppresses this error, but we recommend // doing so only in tests, if necessary. Tests can use [testing.T.Setenv] or // include `//go:debug rsa1024min=0` in a `_test.go` source file to set it. // // Alternatively, see the [GenerateKey (TestKey)] example for a pregenerated // test-only 2048-bit key. // // [GenerateKey (TestKey)]: #example-GenerateKey-TestKey
package rsa import ( ) var bigOne = big.NewInt(1) // A PublicKey represents the public part of an RSA key. // // The value of the modulus N is considered secret by this library and protected // from leaking through timing side-channels. However, neither the value of the // exponent E nor the precise bit size of N are similarly protected. type PublicKey struct { N *big.Int // modulus E int // public exponent } // Any methods implemented on PublicKey might need to also be implemented on // PrivateKey, as the latter embeds the former and will expose its methods. // Size returns the modulus size in bytes. Raw signatures and ciphertexts // for or by this public key will have the same size. func ( *PublicKey) () int { return (.N.BitLen() + 7) / 8 } // Equal reports whether pub and x have the same value. func ( *PublicKey) ( crypto.PublicKey) bool { , := .(*PublicKey) if ! { return false } return bigIntEqual(.N, .N) && .E == .E } // OAEPOptions is an interface for passing options to OAEP decryption using the // crypto.Decrypter interface. type OAEPOptions struct { // Hash is the hash function that will be used when generating the mask. Hash crypto.Hash // MGFHash is the hash function used for MGF1. // If zero, Hash is used instead. MGFHash crypto.Hash // Label is an arbitrary byte string that must be equal to the value // used when encrypting. Label []byte } // A PrivateKey represents an RSA key type PrivateKey struct { PublicKey // public part. D *big.Int // private exponent Primes []*big.Int // prime factors of N, has >= 2 elements. // Precomputed contains precomputed values that speed up RSA operations, // if available. It must be generated by calling PrivateKey.Precompute and // must not be modified. Precomputed PrecomputedValues } // Public returns the public key corresponding to priv. func ( *PrivateKey) () crypto.PublicKey { return &.PublicKey } // Equal reports whether priv and x have equivalent values. It ignores // Precomputed values. func ( *PrivateKey) ( crypto.PrivateKey) bool { , := .(*PrivateKey) if ! { return false } if !.PublicKey.Equal(&.PublicKey) || !bigIntEqual(.D, .D) { return false } if len(.Primes) != len(.Primes) { return false } for := range .Primes { if !bigIntEqual(.Primes[], .Primes[]) { return false } } return true } // bigIntEqual reports whether a and b are equal leaking only their bit length // through timing side-channels. func bigIntEqual(, *big.Int) bool { return subtle.ConstantTimeCompare(.Bytes(), .Bytes()) == 1 } // Sign signs digest with priv, reading randomness from rand. If opts is a // *[PSSOptions] then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will // be used. digest must be the result of hashing the input message using // opts.HashFunc(). // // This method implements [crypto.Signer], which is an interface to support keys // where the private part is kept in, for example, a hardware module. Common // uses should use the Sign* functions in this package directly. func ( *PrivateKey) ( io.Reader, []byte, crypto.SignerOpts) ([]byte, error) { if , := .(*PSSOptions); { return SignPSS(, , .Hash, , ) } return SignPKCS1v15(, , .HashFunc(), ) } // Decrypt decrypts ciphertext with priv. If opts is nil or of type // *[PKCS1v15DecryptOptions] then PKCS #1 v1.5 decryption is performed. Otherwise // opts must have type *[OAEPOptions] and OAEP decryption is done. func ( *PrivateKey) ( io.Reader, []byte, crypto.DecrypterOpts) ( []byte, error) { if == nil { return DecryptPKCS1v15(, , ) } switch opts := .(type) { case *OAEPOptions: if .MGFHash == 0 { return decryptOAEP(.Hash.New(), .Hash.New(), , , .Label) } else { return decryptOAEP(.Hash.New(), .MGFHash.New(), , , .Label) } case *PKCS1v15DecryptOptions: if := .SessionKeyLen; > 0 { = make([]byte, ) if , := io.ReadFull(, ); != nil { return nil, } if := DecryptPKCS1v15SessionKey(, , , ); != nil { return nil, } return , nil } else { return DecryptPKCS1v15(, , ) } default: return nil, errors.New("crypto/rsa: invalid options for Decrypt") } } type PrecomputedValues struct { Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) Qinv *big.Int // Q^-1 mod P // CRTValues is used for the 3rd and subsequent primes. Due to a // historical accident, the CRT for the first two primes is handled // differently in PKCS #1 and interoperability is sufficiently // important that we mirror this. // // Deprecated: These values are still filled in by Precompute for // backwards compatibility but are not used. Multi-prime RSA is very rare, // and is implemented by this package without CRT optimizations to limit // complexity. CRTValues []CRTValue fips *rsa.PrivateKey } // CRTValue contains the precomputed Chinese remainder theorem values. type CRTValue struct { Exp *big.Int // D mod (prime-1). Coeff *big.Int // R·Coeff ≡ 1 mod Prime. R *big.Int // product of primes prior to this (inc p and q). } // Validate performs basic sanity checks on the key. // It returns nil if the key is valid, or else an error describing a problem. // // It runs faster on valid keys if run after [Precompute]. func ( *PrivateKey) () error { // We can operate on keys based on d alone, but it isn't possible to encode // with [crypto/x509.MarshalPKCS1PrivateKey], which unfortunately doesn't // return an error. if len(.Primes) < 2 { return errors.New("crypto/rsa: missing primes") } // If Precomputed.fips is set, then the key has been validated by // [rsa.NewPrivateKey] or [rsa.NewPrivateKeyWithoutCRT]. if .Precomputed.fips != nil { return nil } , := .precompute() return } // rsa1024min is a GODEBUG that re-enables weak RSA keys if set to "0". // See https://go.dev/issue/68762. var rsa1024min = godebug.New("rsa1024min") func checkKeySize( int) error { if >= 1024 { return nil } if rsa1024min.Value() == "0" { rsa1024min.IncNonDefault() return nil } return fmt.Errorf("crypto/rsa: %d-bit keys are insecure (see https://go.dev/pkg/crypto/rsa#hdr-Minimum_key_size)", ) } func checkPublicKeySize( *PublicKey) error { if .N == nil { return errors.New("crypto/rsa: missing public modulus") } return checkKeySize(.N.BitLen()) } // GenerateKey generates a random RSA private key of the given bit size. // // If bits is less than 1024, [GenerateKey] returns an error. See the "[Minimum // key size]" section for further details. // // Most applications should use [crypto/rand.Reader] as rand. Note that the // returned key does not depend deterministically on the bytes read from rand, // and may change between calls and/or between versions. // // [Minimum key size]: #hdr-Minimum_key_size func ( io.Reader, int) (*PrivateKey, error) { if := checkKeySize(); != nil { return nil, } if boring.Enabled && == boring.RandReader && ( == 2048 || == 3072 || == 4096) { , , , , , , , , := boring.GenerateKeyRSA() if != nil { return nil, } := bbig.Dec() := bbig.Dec() := bbig.Dec() := bbig.Dec() := bbig.Dec() := bbig.Dec() := bbig.Dec() := bbig.Dec() := .Int64() if !.IsInt64() || int64(int()) != { return nil, errors.New("crypto/rsa: generated key exponent too large") } := &PrivateKey{ PublicKey: PublicKey{ N: , E: int(), }, D: , Primes: []*big.Int{, }, Precomputed: PrecomputedValues{ Dp: , Dq: , Qinv: , CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute }, } return , nil } if fips140only.Enabled && < 2048 { return nil, errors.New("crypto/rsa: use of keys smaller than 2048 bits is not allowed in FIPS 140-only mode") } if fips140only.Enabled && %2 == 1 { return nil, errors.New("crypto/rsa: use of keys with odd size is not allowed in FIPS 140-only mode") } if fips140only.Enabled && !fips140only.ApprovedRandomReader() { return nil, errors.New("crypto/rsa: only crypto/rand.Reader is allowed in FIPS 140-only mode") } , := rsa.GenerateKey(, ) if != nil { return nil, } , , , , , , , := .Export() := &PrivateKey{ PublicKey: PublicKey{ N: new(big.Int).SetBytes(), E: , }, D: new(big.Int).SetBytes(), Primes: []*big.Int{ new(big.Int).SetBytes(), new(big.Int).SetBytes(), }, Precomputed: PrecomputedValues{ fips: , Dp: new(big.Int).SetBytes(), Dq: new(big.Int).SetBytes(), Qinv: new(big.Int).SetBytes(), CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute }, } return , nil } // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit // size and the given random source. // // Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of // primes for a given bit size. // // Although the public keys are compatible (actually, indistinguishable) from // the 2-prime case, the private keys are not. Thus it may not be possible to // export multi-prime private keys in certain formats or to subsequently import // them into other code. // // This package does not implement CRT optimizations for multi-prime RSA, so the // keys with more than two primes will have worse performance. // // Deprecated: The use of this function with a number of primes different from // two is not recommended for the above security, compatibility, and performance // reasons. Use [GenerateKey] instead. // // [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf func ( io.Reader, int, int) (*PrivateKey, error) { if == 2 { return GenerateKey(, ) } if fips140only.Enabled { return nil, errors.New("crypto/rsa: multi-prime RSA is not allowed in FIPS 140-only mode") } randutil.MaybeReadByte() := new(PrivateKey) .E = 65537 if < 2 { return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") } if < 64 { := float64(uint64(1) << uint(/)) // pi approximates the number of primes less than primeLimit := / (math.Log() - 1) // Generated primes start with 11 (in binary) so we can only // use a quarter of them. /= 4 // Use a factor of two to ensure that key generation terminates // in a reasonable amount of time. /= 2 if <= float64() { return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") } } := make([]*big.Int, ) : for { := // crypto/rand should set the top two bits in each prime. // Thus each prime has the form // p_i = 2^bitlen(p_i) × 0.11... (in base 2). // And the product is: // P = 2^todo × α // where α is the product of nprimes numbers of the form 0.11... // // If α < 1/2 (which can happen for nprimes > 2), we need to // shift todo to compensate for lost bits: the mean value of 0.11... // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 // will give good results. if >= 7 { += ( - 2) / 5 } for := 0; < ; ++ { var error [], = rand.Prime(, /(-)) if != nil { return nil, } -= [].BitLen() } // Make sure that primes is pairwise unequal. for , := range { for := 0; < ; ++ { if .Cmp([]) == 0 { continue } } } := new(big.Int).Set(bigOne) := new(big.Int).Set(bigOne) := new(big.Int) for , := range { .Mul(, ) .Sub(, bigOne) .Mul(, ) } if .BitLen() != { // This should never happen for nprimes == 2 because // crypto/rand should set the top two bits in each prime. // For nprimes > 2 we hope it does not happen often. continue } .D = new(big.Int) := big.NewInt(int64(.E)) := .D.ModInverse(, ) if != nil { .Primes = .N = break } } .Precompute() if := .Validate(); != nil { return nil, } return , nil } // ErrMessageTooLong is returned when attempting to encrypt or sign a message // which is too large for the size of the key. When using [SignPSS], this can also // be returned if the size of the salt is too large. var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size") // ErrDecryption represents a failure to decrypt a message. // It is deliberately vague to avoid adaptive attacks. var ErrDecryption = errors.New("crypto/rsa: decryption error") // ErrVerification represents a failure to verify a signature. // It is deliberately vague to avoid adaptive attacks. var ErrVerification = errors.New("crypto/rsa: verification error") // Precompute performs some calculations that speed up private key operations // in the future. It is safe to run on non-validated private keys. func ( *PrivateKey) () { if .Precomputed.fips != nil { return } , := .precompute() if != nil { // We don't have a way to report errors, so just leave the key // unmodified. Validate will re-run precompute. return } .Precomputed = } func ( *PrivateKey) () (PrecomputedValues, error) { var PrecomputedValues if .N == nil { return , errors.New("crypto/rsa: missing public modulus") } if .D == nil { return , errors.New("crypto/rsa: missing private exponent") } if len(.Primes) != 2 { return .precomputeLegacy() } if .Primes[0] == nil { return , errors.New("crypto/rsa: prime P is nil") } if .Primes[1] == nil { return , errors.New("crypto/rsa: prime Q is nil") } // If the CRT values are already set, use them. if .Precomputed.Dp != nil && .Precomputed.Dq != nil && .Precomputed.Qinv != nil { , := rsa.NewPrivateKeyWithPrecomputation(.N.Bytes(), .E, .D.Bytes(), .Primes[0].Bytes(), .Primes[1].Bytes(), .Precomputed.Dp.Bytes(), .Precomputed.Dq.Bytes(), .Precomputed.Qinv.Bytes()) if != nil { return , } = .Precomputed .fips = .CRTValues = make([]CRTValue, 0) return , nil } , := rsa.NewPrivateKey(.N.Bytes(), .E, .D.Bytes(), .Primes[0].Bytes(), .Primes[1].Bytes()) if != nil { return , } .fips = , , , , , , , := .Export() .Dp = new(big.Int).SetBytes() .Dq = new(big.Int).SetBytes() .Qinv = new(big.Int).SetBytes() .CRTValues = make([]CRTValue, 0) return , nil } func ( *PrivateKey) () (PrecomputedValues, error) { var PrecomputedValues , := rsa.NewPrivateKeyWithoutCRT(.N.Bytes(), .E, .D.Bytes()) if != nil { return , } .fips = if len(.Primes) < 2 { return , nil } // Ensure the Mod and ModInverse calls below don't panic. for , := range .Primes { if == nil { return , errors.New("crypto/rsa: prime factor is nil") } if .Cmp(bigOne) <= 0 { return , errors.New("crypto/rsa: prime factor is <= 1") } } .Dp = new(big.Int).Sub(.Primes[0], bigOne) .Dp.Mod(.D, .Dp) .Dq = new(big.Int).Sub(.Primes[1], bigOne) .Dq.Mod(.D, .Dq) .Qinv = new(big.Int).ModInverse(.Primes[1], .Primes[0]) if .Qinv == nil { return , errors.New("crypto/rsa: prime factors are not relatively prime") } := new(big.Int).Mul(.Primes[0], .Primes[1]) .CRTValues = make([]CRTValue, len(.Primes)-2) for := 2; < len(.Primes); ++ { := .Primes[] := &.CRTValues[-2] .Exp = new(big.Int).Sub(, bigOne) .Exp.Mod(.D, .Exp) .R = new(big.Int).Set() .Coeff = new(big.Int).ModInverse(, ) if .Coeff == nil { return , errors.New("crypto/rsa: prime factors are not relatively prime") } .Mul(, ) } return , nil } func fipsPublicKey( *PublicKey) (*rsa.PublicKey, error) { , := bigmod.NewModulus(.N.Bytes()) if != nil { return nil, } return &rsa.PublicKey{N: , E: .E}, nil } func fipsPrivateKey( *PrivateKey) (*rsa.PrivateKey, error) { if .Precomputed.fips != nil { return .Precomputed.fips, nil } , := .precompute() if != nil { return nil, } return .fips, nil }