// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package regexp implements regular expression search. // // The syntax of the regular expressions accepted is the same // general syntax used by Perl, Python, and other languages. // More precisely, it is the syntax accepted by RE2 and described at // https://golang.org/s/re2syntax, except for \C. // For an overview of the syntax, see the [regexp/syntax] package. // // The regexp implementation provided by this package is // guaranteed to run in time linear in the size of the input. // (This is a property not guaranteed by most open source // implementations of regular expressions.) For more information // about this property, see // // https://swtch.com/~rsc/regexp/regexp1.html // // or any book about automata theory. // // All characters are UTF-8-encoded code points. // Following [utf8.DecodeRune], each byte of an invalid UTF-8 sequence // is treated as if it encoded utf8.RuneError (U+FFFD). // // There are 16 methods of [Regexp] that match a regular expression and identify // the matched text. Their names are matched by this regular expression: // // Find(All)?(String)?(Submatch)?(Index)? // // If 'All' is present, the routine matches successive non-overlapping // matches of the entire expression. Empty matches abutting a preceding // match are ignored. The return value is a slice containing the successive // return values of the corresponding non-'All' routine. These routines take // an extra integer argument, n. If n >= 0, the function returns at most n // matches/submatches; otherwise, it returns all of them. // // If 'String' is present, the argument is a string; otherwise it is a slice // of bytes; return values are adjusted as appropriate. // // If 'Submatch' is present, the return value is a slice identifying the // successive submatches of the expression. Submatches are matches of // parenthesized subexpressions (also known as capturing groups) within the // regular expression, numbered from left to right in order of opening // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is // the match of the first parenthesized subexpression, and so on. // // If 'Index' is present, matches and submatches are identified by byte index // pairs within the input string: result[2*n:2*n+2] identifies the indexes of // the nth submatch. The pair for n==0 identifies the match of the entire // expression. If 'Index' is not present, the match is identified by the text // of the match/submatch. If an index is negative or text is nil, it means that // subexpression did not match any string in the input. For 'String' versions // an empty string means either no match or an empty match. // // There is also a subset of the methods that can be applied to text read // from a RuneReader: // // MatchReader, FindReaderIndex, FindReaderSubmatchIndex // // This set may grow. Note that regular expression matches may need to // examine text beyond the text returned by a match, so the methods that // match text from a RuneReader may read arbitrarily far into the input // before returning. // // (There are a few other methods that do not match this pattern.)
package regexp import ( ) // Regexp is the representation of a compiled regular expression. // A Regexp is safe for concurrent use by multiple goroutines, // except for configuration methods, such as [Regexp.Longest]. type Regexp struct { expr string // as passed to Compile prog *syntax.Prog // compiled program onepass *onePassProg // onepass program or nil numSubexp int maxBitStateLen int subexpNames []string prefix string // required prefix in unanchored matches prefixBytes []byte // prefix, as a []byte prefixRune rune // first rune in prefix prefixEnd uint32 // pc for last rune in prefix mpool int // pool for machines matchcap int // size of recorded match lengths prefixComplete bool // prefix is the entire regexp cond syntax.EmptyOp // empty-width conditions required at start of match minInputLen int // minimum length of the input in bytes // This field can be modified by the Longest method, // but it is otherwise read-only. longest bool // whether regexp prefers leftmost-longest match } // String returns the source text used to compile the regular expression. func ( *Regexp) () string { return .expr } // Copy returns a new [Regexp] object copied from re. // Calling [Regexp.Longest] on one copy does not affect another. // // Deprecated: In earlier releases, when using a [Regexp] in multiple goroutines, // giving each goroutine its own copy helped to avoid lock contention. // As of Go 1.12, using Copy is no longer necessary to avoid lock contention. // Copy may still be appropriate if the reason for its use is to make // two copies with different [Regexp.Longest] settings. func ( *Regexp) () *Regexp { := * return & } // Compile parses a regular expression and returns, if successful, // a [Regexp] object that can be used to match against text. // // When matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses the one that a backtracking search would have found first. // This so-called leftmost-first matching is the same semantics // that Perl, Python, and other implementations use, although this // package implements it without the expense of backtracking. // For POSIX leftmost-longest matching, see [CompilePOSIX]. func ( string) (*Regexp, error) { return compile(, syntax.Perl, false) } // CompilePOSIX is like [Compile] but restricts the regular expression // to POSIX ERE (egrep) syntax and changes the match semantics to // leftmost-longest. // // That is, when matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses a match that is as long as possible. // This so-called leftmost-longest matching is the same semantics // that early regular expression implementations used and that POSIX // specifies. // // However, there can be multiple leftmost-longest matches, with different // submatch choices, and here this package diverges from POSIX. // Among the possible leftmost-longest matches, this package chooses // the one that a backtracking search would have found first, while POSIX // specifies that the match be chosen to maximize the length of the first // subexpression, then the second, and so on from left to right. // The POSIX rule is computationally prohibitive and not even well-defined. // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details. func ( string) (*Regexp, error) { return compile(, syntax.POSIX, true) } // Longest makes future searches prefer the leftmost-longest match. // That is, when matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses a match that is as long as possible. // This method modifies the [Regexp] and may not be called concurrently // with any other methods. func ( *Regexp) () { .longest = true } func compile( string, syntax.Flags, bool) (*Regexp, error) { , := syntax.Parse(, ) if != nil { return nil, } := .MaxCap() := .CapNames() = .Simplify() , := syntax.Compile() if != nil { return nil, } := .NumCap if < 2 { = 2 } := &Regexp{ expr: , prog: , onepass: compileOnePass(), numSubexp: , subexpNames: , cond: .StartCond(), longest: , matchcap: , minInputLen: minInputLen(), } if .onepass == nil { .prefix, .prefixComplete = .Prefix() .maxBitStateLen = maxBitStateLen() } else { .prefix, .prefixComplete, .prefixEnd = onePassPrefix() } if .prefix != "" { // TODO(rsc): Remove this allocation by adding // IndexString to package bytes. .prefixBytes = []byte(.prefix) .prefixRune, _ = utf8.DecodeRuneInString(.prefix) } := len(.Inst) := 0 for matchSize[] != 0 && matchSize[] < { ++ } .mpool = return , nil } // Pools of *machine for use during (*Regexp).doExecute, // split up by the size of the execution queues. // matchPool[i] machines have queue size matchSize[i]. // On a 64-bit system each queue entry is 16 bytes, // so matchPool[0] has 16*2*128 = 4kB queues, etc. // The final matchPool is a catch-all for very large queues. var ( matchSize = [...]int{128, 512, 2048, 16384, 0} matchPool [len(matchSize)]sync.Pool ) // get returns a machine to use for matching re. // It uses the re's machine cache if possible, to avoid // unnecessary allocation. func ( *Regexp) () *machine { , := matchPool[.mpool].Get().(*machine) if ! { = new(machine) } .re = .p = .prog if cap(.matchcap) < .matchcap { .matchcap = make([]int, .matchcap) for , := range .pool { .cap = make([]int, .matchcap) } } // Allocate queues if needed. // Or reallocate, for "large" match pool. := matchSize[.mpool] if == 0 { // large pool = len(.prog.Inst) } if len(.q0.sparse) < { .q0 = queue{make([]uint32, ), make([]entry, 0, )} .q1 = queue{make([]uint32, ), make([]entry, 0, )} } return } // put returns a machine to the correct machine pool. func ( *Regexp) ( *machine) { .re = nil .p = nil .inputs.clear() matchPool[.mpool].Put() } // minInputLen walks the regexp to find the minimum length of any matchable input. func minInputLen( *syntax.Regexp) int { switch .Op { default: return 0 case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass: return 1 case syntax.OpLiteral: := 0 for , := range .Rune { if == utf8.RuneError { ++ } else { += utf8.RuneLen() } } return case syntax.OpCapture, syntax.OpPlus: return (.Sub[0]) case syntax.OpRepeat: return .Min * (.Sub[0]) case syntax.OpConcat: := 0 for , := range .Sub { += () } return case syntax.OpAlternate: := (.Sub[0]) var int for , := range .Sub[1:] { = () if < { = } } return } } // MustCompile is like [Compile] but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func ( string) *Regexp { , := Compile() if != nil { panic(`regexp: Compile(` + quote() + `): ` + .Error()) } return } // MustCompilePOSIX is like [CompilePOSIX] but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func ( string) *Regexp { , := CompilePOSIX() if != nil { panic(`regexp: CompilePOSIX(` + quote() + `): ` + .Error()) } return } func quote( string) string { if strconv.CanBackquote() { return "`" + + "`" } return strconv.Quote() } // NumSubexp returns the number of parenthesized subexpressions in this [Regexp]. func ( *Regexp) () int { return .numSubexp } // SubexpNames returns the names of the parenthesized subexpressions // in this [Regexp]. The name for the first sub-expression is names[1], // so that if m is a match slice, the name for m[i] is SubexpNames()[i]. // Since the Regexp as a whole cannot be named, names[0] is always // the empty string. The slice should not be modified. func ( *Regexp) () []string { return .subexpNames } // SubexpIndex returns the index of the first subexpression with the given name, // or -1 if there is no subexpression with that name. // // Note that multiple subexpressions can be written using the same name, as in // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob". // In this case, SubexpIndex returns the index of the leftmost such subexpression // in the regular expression. func ( *Regexp) ( string) int { if != "" { for , := range .subexpNames { if == { return } } } return -1 } const endOfText rune = -1 // input abstracts different representations of the input text. It provides // one-character lookahead. type input interface { step(pos int) (r rune, width int) // advance one rune canCheckPrefix() bool // can we look ahead without losing info? hasPrefix(re *Regexp) bool index(re *Regexp, pos int) int context(pos int) lazyFlag } // inputString scans a string. type inputString struct { str string } func ( *inputString) ( int) (rune, int) { if < len(.str) { := .str[] if < utf8.RuneSelf { return rune(), 1 } return utf8.DecodeRuneInString(.str[:]) } return endOfText, 0 } func ( *inputString) () bool { return true } func ( *inputString) ( *Regexp) bool { return strings.HasPrefix(.str, .prefix) } func ( *inputString) ( *Regexp, int) int { return strings.Index(.str[:], .prefix) } func ( *inputString) ( int) lazyFlag { , := endOfText, endOfText // 0 < pos && pos <= len(i.str) if uint(-1) < uint(len(.str)) { = rune(.str[-1]) if >= utf8.RuneSelf { , _ = utf8.DecodeLastRuneInString(.str[:]) } } // 0 <= pos && pos < len(i.str) if uint() < uint(len(.str)) { = rune(.str[]) if >= utf8.RuneSelf { , _ = utf8.DecodeRuneInString(.str[:]) } } return newLazyFlag(, ) } // inputBytes scans a byte slice. type inputBytes struct { str []byte } func ( *inputBytes) ( int) (rune, int) { if < len(.str) { := .str[] if < utf8.RuneSelf { return rune(), 1 } return utf8.DecodeRune(.str[:]) } return endOfText, 0 } func ( *inputBytes) () bool { return true } func ( *inputBytes) ( *Regexp) bool { return bytes.HasPrefix(.str, .prefixBytes) } func ( *inputBytes) ( *Regexp, int) int { return bytes.Index(.str[:], .prefixBytes) } func ( *inputBytes) ( int) lazyFlag { , := endOfText, endOfText // 0 < pos && pos <= len(i.str) if uint(-1) < uint(len(.str)) { = rune(.str[-1]) if >= utf8.RuneSelf { , _ = utf8.DecodeLastRune(.str[:]) } } // 0 <= pos && pos < len(i.str) if uint() < uint(len(.str)) { = rune(.str[]) if >= utf8.RuneSelf { , _ = utf8.DecodeRune(.str[:]) } } return newLazyFlag(, ) } // inputReader scans a RuneReader. type inputReader struct { r io.RuneReader atEOT bool pos int } func ( *inputReader) ( int) (rune, int) { if !.atEOT && != .pos { return endOfText, 0 } , , := .r.ReadRune() if != nil { .atEOT = true return endOfText, 0 } .pos += return , } func ( *inputReader) () bool { return false } func ( *inputReader) ( *Regexp) bool { return false } func ( *inputReader) ( *Regexp, int) int { return -1 } func ( *inputReader) ( int) lazyFlag { return 0 // not used } // LiteralPrefix returns a literal string that must begin any match // of the regular expression re. It returns the boolean true if the // literal string comprises the entire regular expression. func ( *Regexp) () ( string, bool) { return .prefix, .prefixComplete } // MatchReader reports whether the text returned by the [io.RuneReader] // contains any match of the regular expression re. func ( *Regexp) ( io.RuneReader) bool { return .doMatch(, nil, "") } // MatchString reports whether the string s // contains any match of the regular expression re. func ( *Regexp) ( string) bool { return .doMatch(nil, nil, ) } // Match reports whether the byte slice b // contains any match of the regular expression re. func ( *Regexp) ( []byte) bool { return .doMatch(nil, , "") } // MatchReader reports whether the text returned by the RuneReader // contains any match of the regular expression pattern. // More complicated queries need to use [Compile] and the full [Regexp] interface. func ( string, io.RuneReader) ( bool, error) { , := Compile() if != nil { return false, } return .MatchReader(), nil } // MatchString reports whether the string s // contains any match of the regular expression pattern. // More complicated queries need to use [Compile] and the full [Regexp] interface. func ( string, string) ( bool, error) { , := Compile() if != nil { return false, } return .MatchString(), nil } // Match reports whether the byte slice b // contains any match of the regular expression pattern. // More complicated queries need to use [Compile] and the full [Regexp] interface. func ( string, []byte) ( bool, error) { , := Compile() if != nil { return false, } return .Match(), nil } // ReplaceAllString returns a copy of src, replacing matches of the [Regexp] // with the replacement string repl. // Inside repl, $ signs are interpreted as in [Regexp.Expand]. func ( *Regexp) (, string) string { := 2 if strings.Contains(, "$") { = 2 * (.numSubexp + 1) } := .replaceAll(nil, , , func( []byte, []int) []byte { return .expand(, , nil, , ) }) return string() } // ReplaceAllLiteralString returns a copy of src, replacing matches of the [Regexp] // with the replacement string repl. The replacement repl is substituted directly, // without using [Regexp.Expand]. func ( *Regexp) (, string) string { return string(.replaceAll(nil, , 2, func( []byte, []int) []byte { return append(, ...) })) } // ReplaceAllStringFunc returns a copy of src in which all matches of the // [Regexp] have been replaced by the return value of function repl applied // to the matched substring. The replacement returned by repl is substituted // directly, without using [Regexp.Expand]. func ( *Regexp) ( string, func(string) string) string { := .replaceAll(nil, , 2, func( []byte, []int) []byte { return append(, ([[0]:[1]])...) }) return string() } func ( *Regexp) ( []byte, string, int, func( []byte, []int) []byte) []byte { := 0 // end position of the most recent match := 0 // position where we next look for a match var []byte var int if != nil { = len() } else { = len() } if > .prog.NumCap { = .prog.NumCap } var [2]int for <= { := .doExecute(nil, , , , , [:0]) if len() == 0 { break // no more matches } // Copy the unmatched characters before this match. if != nil { = append(, [:[0]]...) } else { = append(, [:[0]]...) } // Now insert a copy of the replacement string, but not for a // match of the empty string immediately after another match. // (Otherwise, we get double replacement for patterns that // match both empty and nonempty strings.) if [1] > || [0] == 0 { = (, ) } = [1] // Advance past this match; always advance at least one character. var int if != nil { _, = utf8.DecodeRune([:]) } else { _, = utf8.DecodeRuneInString([:]) } if + > [1] { += } else if +1 > [1] { // This clause is only needed at the end of the input // string. In that case, DecodeRuneInString returns width=0. ++ } else { = [1] } } // Copy the unmatched characters after the last match. if != nil { = append(, [:]...) } else { = append(, [:]...) } return } // ReplaceAll returns a copy of src, replacing matches of the [Regexp] // with the replacement text repl. // Inside repl, $ signs are interpreted as in [Regexp.Expand]. func ( *Regexp) (, []byte) []byte { := 2 if bytes.IndexByte(, '$') >= 0 { = 2 * (.numSubexp + 1) } := "" := .replaceAll(, "", , func( []byte, []int) []byte { if len() != len() { = string() } return .expand(, , , "", ) }) return } // ReplaceAllLiteral returns a copy of src, replacing matches of the [Regexp] // with the replacement bytes repl. The replacement repl is substituted directly, // without using [Regexp.Expand]. func ( *Regexp) (, []byte) []byte { return .replaceAll(, "", 2, func( []byte, []int) []byte { return append(, ...) }) } // ReplaceAllFunc returns a copy of src in which all matches of the // [Regexp] have been replaced by the return value of function repl applied // to the matched byte slice. The replacement returned by repl is substituted // directly, without using [Regexp.Expand]. func ( *Regexp) ( []byte, func([]byte) []byte) []byte { return .replaceAll(, "", 2, func( []byte, []int) []byte { return append(, ([[0]:[1]])...) }) } // Bitmap used by func special to check whether a character needs to be escaped. var specialBytes [16]byte // special reports whether byte b needs to be escaped by QuoteMeta. func special( byte) bool { return < utf8.RuneSelf && specialBytes[%16]&(1<<(/16)) != 0 } func init() { for , := range []byte(`\.+*?()|[]{}^$`) { specialBytes[%16] |= 1 << ( / 16) } } // QuoteMeta returns a string that escapes all regular expression metacharacters // inside the argument text; the returned string is a regular expression matching // the literal text. func ( string) string { // A byte loop is correct because all metacharacters are ASCII. var int for = 0; < len(); ++ { if special([]) { break } } // No meta characters found, so return original string. if >= len() { return } := make([]byte, 2*len()-) copy(, [:]) := for ; < len(); ++ { if special([]) { [] = '\\' ++ } [] = [] ++ } return string([:]) } // The number of capture values in the program may correspond // to fewer capturing expressions than are in the regexp. // For example, "(a){0}" turns into an empty program, so the // maximum capture in the program is 0 but we need to return // an expression for \1. Pad appends -1s to the slice a as needed. func ( *Regexp) ( []int) []int { if == nil { // No match. return nil } := (1 + .numSubexp) * 2 for len() < { = append(, -1) } return } // allMatches calls deliver at most n times // with the location of successive matches in the input text. // The input text is b if non-nil, otherwise s. func ( *Regexp) ( string, []byte, int, func([]int)) { var int if == nil { = len() } else { = len() } for , , := 0, 0, -1; < && <= ; { := .doExecute(nil, , , , .prog.NumCap, nil) if len() == 0 { break } := true if [1] == { // We've found an empty match. if [0] == { // We don't allow an empty match right // after a previous match, so ignore it. = false } var int if == nil { := inputString{str: } _, = .step() } else { := inputBytes{str: } _, = .step() } if > 0 { += } else { = + 1 } } else { = [1] } = [1] if { (.pad()) ++ } } } // Find returns a slice holding the text of the leftmost match in b of the regular expression. // A return value of nil indicates no match. func ( *Regexp) ( []byte) []byte { var [2]int := .doExecute(nil, , "", 0, 2, [:0]) if == nil { return nil } return [[0]:[1]:[1]] } // FindIndex returns a two-element slice of integers defining the location of // the leftmost match in b of the regular expression. The match itself is at // b[loc[0]:loc[1]]. // A return value of nil indicates no match. func ( *Regexp) ( []byte) ( []int) { := .doExecute(nil, , "", 0, 2, nil) if == nil { return nil } return [0:2] } // FindString returns a string holding the text of the leftmost match in s of the regular // expression. If there is no match, the return value is an empty string, // but it will also be empty if the regular expression successfully matches // an empty string. Use [Regexp.FindStringIndex] or [Regexp.FindStringSubmatch] if it is // necessary to distinguish these cases. func ( *Regexp) ( string) string { var [2]int := .doExecute(nil, nil, , 0, 2, [:0]) if == nil { return "" } return [[0]:[1]] } // FindStringIndex returns a two-element slice of integers defining the // location of the leftmost match in s of the regular expression. The match // itself is at s[loc[0]:loc[1]]. // A return value of nil indicates no match. func ( *Regexp) ( string) ( []int) { := .doExecute(nil, nil, , 0, 2, nil) if == nil { return nil } return [0:2] } // FindReaderIndex returns a two-element slice of integers defining the // location of the leftmost match of the regular expression in text read from // the [io.RuneReader]. The match text was found in the input stream at // byte offset loc[0] through loc[1]-1. // A return value of nil indicates no match. func ( *Regexp) ( io.RuneReader) ( []int) { := .doExecute(, nil, "", 0, 2, nil) if == nil { return nil } return [0:2] } // FindSubmatch returns a slice of slices holding the text of the leftmost // match of the regular expression in b and the matches, if any, of its // subexpressions, as defined by the 'Submatch' descriptions in the package // comment. // A return value of nil indicates no match. func ( *Regexp) ( []byte) [][]byte { var [4]int := .doExecute(nil, , "", 0, .prog.NumCap, [:0]) if == nil { return nil } := make([][]byte, 1+.numSubexp) for := range { if 2* < len() && [2*] >= 0 { [] = [[2*]:[2*+1]:[2*+1]] } } return } // Expand appends template to dst and returns the result; during the // append, Expand replaces variables in the template with corresponding // matches drawn from src. The match slice should have been returned by // [Regexp.FindSubmatchIndex]. // // In the template, a variable is denoted by a substring of the form // $name or ${name}, where name is a non-empty sequence of letters, // digits, and underscores. A purely numeric name like $1 refers to // the submatch with the corresponding index; other names refer to // capturing parentheses named with the (?P<name>...) syntax. A // reference to an out of range or unmatched index or a name that is not // present in the regular expression is replaced with an empty slice. // // In the $name form, name is taken to be as long as possible: $1x is // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0. // // To insert a literal $ in the output, use $$ in the template. func ( *Regexp) ( []byte, []byte, []byte, []int) []byte { return .expand(, string(), , "", ) } // ExpandString is like [Regexp.Expand] but the template and source are strings. // It appends to and returns a byte slice in order to give the calling // code control over allocation. func ( *Regexp) ( []byte, string, string, []int) []byte { return .expand(, , nil, , ) } func ( *Regexp) ( []byte, string, []byte, string, []int) []byte { for len() > 0 { , , := strings.Cut(, "$") if ! { break } = append(, ...) = if != "" && [0] == '$' { // Treat $$ as $. = append(, '$') = [1:] continue } , , , := extract() if ! { // Malformed; treat $ as raw text. = append(, '$') continue } = if >= 0 { if 2*+1 < len() && [2*] >= 0 { if != nil { = append(, [[2*]:[2*+1]]...) } else { = append(, [[2*]:[2*+1]]...) } } } else { for , := range .subexpNames { if == && 2*+1 < len() && [2*] >= 0 { if != nil { = append(, [[2*]:[2*+1]]...) } else { = append(, [[2*]:[2*+1]]...) } break } } } } = append(, ...) return } // extract returns the name from a leading "name" or "{name}" in str. // (The $ has already been removed by the caller.) // If it is a number, extract returns num set to that number; otherwise num = -1. func extract( string) ( string, int, string, bool) { if == "" { return } := false if [0] == '{' { = true = [1:] } := 0 for < len() { , := utf8.DecodeRuneInString([:]) if !unicode.IsLetter() && !unicode.IsDigit() && != '_' { break } += } if == 0 { // empty name is not okay return } = [:] if { if >= len() || [] != '}' { // missing closing brace return } ++ } // Parse number. = 0 for := 0; < len(); ++ { if [] < '0' || '9' < [] || >= 1e8 { = -1 break } = *10 + int([]) - '0' } // Disallow leading zeros. if [0] == '0' && len() > 1 { = -1 } = [:] = true return } // FindSubmatchIndex returns a slice holding the index pairs identifying the // leftmost match of the regular expression in b and the matches, if any, of // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions // in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( []byte) []int { return .pad(.doExecute(nil, , "", 0, .prog.NumCap, nil)) } // FindStringSubmatch returns a slice of strings holding the text of the // leftmost match of the regular expression in s and the matches, if any, of // its subexpressions, as defined by the 'Submatch' description in the // package comment. // A return value of nil indicates no match. func ( *Regexp) ( string) []string { var [4]int := .doExecute(nil, nil, , 0, .prog.NumCap, [:0]) if == nil { return nil } := make([]string, 1+.numSubexp) for := range { if 2* < len() && [2*] >= 0 { [] = [[2*]:[2*+1]] } } return } // FindStringSubmatchIndex returns a slice holding the index pairs // identifying the leftmost match of the regular expression in s and the // matches, if any, of its subexpressions, as defined by the 'Submatch' and // 'Index' descriptions in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( string) []int { return .pad(.doExecute(nil, nil, , 0, .prog.NumCap, nil)) } // FindReaderSubmatchIndex returns a slice holding the index pairs // identifying the leftmost match of the regular expression of text read by // the [io.RuneReader], and the matches, if any, of its subexpressions, as defined // by the 'Submatch' and 'Index' descriptions in the package comment. A // return value of nil indicates no match. func ( *Regexp) ( io.RuneReader) []int { return .pad(.doExecute(, nil, "", 0, .prog.NumCap, nil)) } const startSize = 10 // The size at which to start a slice in the 'All' routines. // FindAll is the 'All' version of [Regexp.Find]; it returns a slice of all successive // matches of the expression, as defined by the 'All' description in the // package comment. // A return value of nil indicates no match. func ( *Regexp) ( []byte, int) [][]byte { if < 0 { = len() + 1 } var [][]byte .allMatches("", , , func( []int) { if == nil { = make([][]byte, 0, startSize) } = append(, [[0]:[1]:[1]]) }) return } // FindAllIndex is the 'All' version of [Regexp.FindIndex]; it returns a slice of all // successive matches of the expression, as defined by the 'All' description // in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( []byte, int) [][]int { if < 0 { = len() + 1 } var [][]int .allMatches("", , , func( []int) { if == nil { = make([][]int, 0, startSize) } = append(, [0:2]) }) return } // FindAllString is the 'All' version of [Regexp.FindString]; it returns a slice of all // successive matches of the expression, as defined by the 'All' description // in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( string, int) []string { if < 0 { = len() + 1 } var []string .allMatches(, nil, , func( []int) { if == nil { = make([]string, 0, startSize) } = append(, [[0]:[1]]) }) return } // FindAllStringIndex is the 'All' version of [Regexp.FindStringIndex]; it returns a // slice of all successive matches of the expression, as defined by the 'All' // description in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( string, int) [][]int { if < 0 { = len() + 1 } var [][]int .allMatches(, nil, , func( []int) { if == nil { = make([][]int, 0, startSize) } = append(, [0:2]) }) return } // FindAllSubmatch is the 'All' version of [Regexp.FindSubmatch]; it returns a slice // of all successive matches of the expression, as defined by the 'All' // description in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( []byte, int) [][][]byte { if < 0 { = len() + 1 } var [][][]byte .allMatches("", , , func( []int) { if == nil { = make([][][]byte, 0, startSize) } := make([][]byte, len()/2) for := range { if [2*] >= 0 { [] = [[2*]:[2*+1]:[2*+1]] } } = append(, ) }) return } // FindAllSubmatchIndex is the 'All' version of [Regexp.FindSubmatchIndex]; it returns // a slice of all successive matches of the expression, as defined by the // 'All' description in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( []byte, int) [][]int { if < 0 { = len() + 1 } var [][]int .allMatches("", , , func( []int) { if == nil { = make([][]int, 0, startSize) } = append(, ) }) return } // FindAllStringSubmatch is the 'All' version of [Regexp.FindStringSubmatch]; it // returns a slice of all successive matches of the expression, as defined by // the 'All' description in the package comment. // A return value of nil indicates no match. func ( *Regexp) ( string, int) [][]string { if < 0 { = len() + 1 } var [][]string .allMatches(, nil, , func( []int) { if == nil { = make([][]string, 0, startSize) } := make([]string, len()/2) for := range { if [2*] >= 0 { [] = [[2*]:[2*+1]] } } = append(, ) }) return } // FindAllStringSubmatchIndex is the 'All' version of // [Regexp.FindStringSubmatchIndex]; it returns a slice of all successive matches of // the expression, as defined by the 'All' description in the package // comment. // A return value of nil indicates no match. func ( *Regexp) ( string, int) [][]int { if < 0 { = len() + 1 } var [][]int .allMatches(, nil, , func( []int) { if == nil { = make([][]int, 0, startSize) } = append(, ) }) return } // Split slices s into substrings separated by the expression and returns a slice of // the substrings between those expression matches. // // The slice returned by this method consists of all the substrings of s // not contained in the slice returned by [Regexp.FindAllString]. When called on an expression // that contains no metacharacters, it is equivalent to [strings.SplitN]. // // Example: // // s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5) // // s: ["", "b", "b", "c", "cadaaae"] // // The count determines the number of substrings to return: // // n > 0: at most n substrings; the last substring will be the unsplit remainder. // n == 0: the result is nil (zero substrings) // n < 0: all substrings func ( *Regexp) ( string, int) []string { if == 0 { return nil } if len(.expr) > 0 && len() == 0 { return []string{""} } := .FindAllStringIndex(, ) := make([]string, 0, len()) := 0 := 0 for , := range { if > 0 && len() >= -1 { break } = [0] if [1] != 0 { = append(, [:]) } = [1] } if != len() { = append(, [:]) } return } // MarshalText implements [encoding.TextMarshaler]. The output // matches that of calling the [Regexp.String] method. // // Note that the output is lossy in some cases: This method does not indicate // POSIX regular expressions (i.e. those compiled by calling [CompilePOSIX]), or // those for which the [Regexp.Longest] method has been called. func ( *Regexp) () ([]byte, error) { return []byte(.String()), nil } // UnmarshalText implements [encoding.TextUnmarshaler] by calling // [Compile] on the encoded value. func ( *Regexp) ( []byte) error { , := Compile(string()) if != nil { return } * = * return nil }