Source File
rand.go
Belonging Package
runtime
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Random number generation
package runtime
import (
_ // for go:linkname
)
// OS-specific startup can set startupRand if the OS passes
// random data to the process at startup time.
// For example Linux passes 16 bytes in the auxv vector.
var startupRand []byte
// globalRand holds the global random state.
// It is only used at startup and for creating new m's.
// Otherwise the per-m random state should be used
// by calling goodrand.
var globalRand struct {
lock mutex
seed [32]byte
state chacha8rand.State
init bool
}
var readRandomFailed bool
// randinit initializes the global random state.
// It must be called before any use of grand.
func randinit() {
lock(&globalRand.lock)
if globalRand.init {
fatal("randinit twice")
}
:= &globalRand.seed
if startupRand != nil {
for , := range startupRand {
[%len()] ^=
}
clear(startupRand)
startupRand = nil
} else {
if readRandom([:]) != len() {
// readRandom should never fail, but if it does we'd rather
// not make Go binaries completely unusable, so make up
// some random data based on the current time.
readRandomFailed = true
readTimeRandom([:])
}
}
globalRand.state.Init(*)
clear([:])
globalRand.init = true
unlock(&globalRand.lock)
}
// readTimeRandom stretches any entropy in the current time
// into entropy the length of r and XORs it into r.
// This is a fallback for when readRandom does not read
// the full requested amount.
// Whatever entropy r already contained is preserved.
func readTimeRandom( []byte) {
// Inspired by wyrand.
// An earlier version of this code used getg().m.procid as well,
// but note that this is called so early in startup that procid
// is not initialized yet.
:= uint64(nanotime())
for len() > 0 {
^= 0xa0761d6478bd642f
*= 0xe7037ed1a0b428db
:= 8
if len() < 8 {
= len()
}
for := 0; < ; ++ {
[] ^= byte( >> (8 * ))
}
= [:]
= >>32 | <<32
}
}
// bootstrapRand returns a random uint64 from the global random generator.
func bootstrapRand() uint64 {
lock(&globalRand.lock)
if !globalRand.init {
fatal("randinit missed")
}
for {
if , := globalRand.state.Next(); {
unlock(&globalRand.lock)
return
}
globalRand.state.Refill()
}
}
// bootstrapRandReseed reseeds the bootstrap random number generator,
// clearing from memory any trace of previously returned random numbers.
func bootstrapRandReseed() {
lock(&globalRand.lock)
if !globalRand.init {
fatal("randinit missed")
}
globalRand.state.Reseed()
unlock(&globalRand.lock)
}
// rand32 is uint32(rand()), called from compiler-generated code.
//
//go:nosplit
func rand32() uint32 {
return uint32(rand())
}
// rand returns a random uint64 from the per-m chacha8 state.
// Do not change signature: used via linkname from other packages.
//
//go:nosplit
//go:linkname rand
func rand() uint64 {
// Note: We avoid acquirem here so that in the fast path
// there is just a getg, an inlined c.Next, and a return.
// The performance difference on a 16-core AMD is
// 3.7ns/call this way versus 4.3ns/call with acquirem (+16%).
:= getg().m
:= &.chacha8
for {
// Note: c.Next is marked nosplit,
// so we don't need to use mp.locks
// on the fast path, which is that the
// first attempt succeeds.
, := .Next()
if {
return
}
.locks++ // hold m even though c.Refill may do stack split checks
.Refill()
.locks--
}
}
// mrandinit initializes the random state of an m.
func mrandinit( *m) {
var [4]uint64
for := range {
[] = bootstrapRand()
}
bootstrapRandReseed() // erase key we just extracted
.chacha8.Init64()
.cheaprand = rand()
}
// randn is like rand() % n but faster.
// Do not change signature: used via linkname from other packages.
//
//go:nosplit
//go:linkname randn
func randn( uint32) uint32 {
// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
return uint32((uint64(uint32(rand())) * uint64()) >> 32)
}
// cheaprand is a non-cryptographic-quality 32-bit random generator
// suitable for calling at very high frequency (such as during scheduling decisions)
// and at sensitive moments in the runtime (such as during stack unwinding).
// it is "cheap" in the sense of both expense and quality.
//
// cheaprand must not be exported to other packages:
// the rule is that other packages using runtime-provided
// randomness must always use rand.
//
// cheaprand should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - github.com/bytedance/gopkg
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname cheaprand
//go:nosplit
func cheaprand() uint32 {
:= getg().m
// Implement wyrand: https://github.com/wangyi-fudan/wyhash
// Only the platform that math.Mul64 can be lowered
// by the compiler should be in this list.
if goarch.IsAmd64|goarch.IsArm64|goarch.IsPpc64|
goarch.IsPpc64le|goarch.IsMips64|goarch.IsMips64le|
goarch.IsS390x|goarch.IsRiscv64|goarch.IsLoong64 == 1 {
.cheaprand += 0xa0761d6478bd642f
, := math.Mul64(.cheaprand, .cheaprand^0xe7037ed1a0b428db)
return uint32( ^ )
}
// Implement xorshift64+: 2 32-bit xorshift sequences added together.
// Shift triplet [17,7,16] was calculated as indicated in Marsaglia's
// Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
// This generator passes the SmallCrush suite, part of TestU01 framework:
// http://simul.iro.umontreal.ca/testu01/tu01.html
:= (*[2]uint32)(unsafe.Pointer(&.cheaprand))
, := [0], [1]
^= << 17
= ^ ^ >>7 ^ >>16
[0], [1] = ,
return +
}
// cheaprand64 is a non-cryptographic-quality 63-bit random generator
// suitable for calling at very high frequency (such as during sampling decisions).
// it is "cheap" in the sense of both expense and quality.
//
// cheaprand64 must not be exported to other packages:
// the rule is that other packages using runtime-provided
// randomness must always use rand.
//
// cheaprand64 should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - github.com/zhangyunhao116/fastrand
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname cheaprand64
//go:nosplit
func cheaprand64() int64 {
return int64(cheaprand())<<31 ^ int64(cheaprand())
}
// cheaprandn is like cheaprand() % n but faster.
//
// cheaprandn must not be exported to other packages:
// the rule is that other packages using runtime-provided
// randomness must always use randn.
//
// cheaprandn should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - github.com/phuslu/log
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname cheaprandn
//go:nosplit
func cheaprandn( uint32) uint32 {
// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
return uint32((uint64(cheaprand()) * uint64()) >> 32)
}
// Too much legacy code has go:linkname references
// to runtime.fastrand and friends, so keep these around for now.
// Code should migrate to math/rand/v2.Uint64,
// which is just as fast, but that's only available in Go 1.22+.
// It would be reasonable to remove these in Go 1.24.
// Do not call these from package runtime.
//go:linkname legacy_fastrand runtime.fastrand
func legacy_fastrand() uint32 {
return uint32(rand())
}
//go:linkname legacy_fastrandn runtime.fastrandn
func legacy_fastrandn( uint32) uint32 {
return randn()
}
//go:linkname legacy_fastrand64 runtime.fastrand64
func legacy_fastrand64() uint64 {
return rand()
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |