// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	
	
	
	
	
)

// throwType indicates the current type of ongoing throw, which affects the
// amount of detail printed to stderr. Higher values include more detail.
type throwType uint32

const (
	// throwTypeNone means that we are not throwing.
	throwTypeNone throwType = iota

	// throwTypeUser is a throw due to a problem with the application.
	//
	// These throws do not include runtime frames, system goroutines, or
	// frame metadata.
	throwTypeUser

	// throwTypeRuntime is a throw due to a problem with Go itself.
	//
	// These throws include as much information as possible to aid in
	// debugging the runtime, including runtime frames, system goroutines,
	// and frame metadata.
	throwTypeRuntime
)

// We have two different ways of doing defers. The older way involves creating a
// defer record at the time that a defer statement is executing and adding it to a
// defer chain. This chain is inspected by the deferreturn call at all function
// exits in order to run the appropriate defer calls. A cheaper way (which we call
// open-coded defers) is used for functions in which no defer statements occur in
// loops. In that case, we simply store the defer function/arg information into
// specific stack slots at the point of each defer statement, as well as setting a
// bit in a bitmask. At each function exit, we add inline code to directly make
// the appropriate defer calls based on the bitmask and fn/arg information stored
// on the stack. During panic/Goexit processing, the appropriate defer calls are
// made using extra funcdata info that indicates the exact stack slots that
// contain the bitmask and defer fn/args.

// Check to make sure we can really generate a panic. If the panic
// was generated from the runtime, or from inside malloc, then convert
// to a throw of msg.
// pc should be the program counter of the compiler-generated code that
// triggered this panic.
func panicCheck1( uintptr,  string) {
	if goarch.IsWasm == 0 && hasPrefix(funcname(findfunc()), "runtime.") {
		// Note: wasm can't tail call, so we can't get the original caller's pc.
		throw()
	}
	// TODO: is this redundant? How could we be in malloc
	// but not in the runtime? runtime/internal/*, maybe?
	 := getg()
	if  != nil && .m != nil && .m.mallocing != 0 {
		throw()
	}
}

// Same as above, but calling from the runtime is allowed.
//
// Using this function is necessary for any panic that may be
// generated by runtime.sigpanic, since those are always called by the
// runtime.
func panicCheck2( string) {
	// panic allocates, so to avoid recursive malloc, turn panics
	// during malloc into throws.
	 := getg()
	if  != nil && .m != nil && .m.mallocing != 0 {
		throw()
	}
}

// Many of the following panic entry-points turn into throws when they
// happen in various runtime contexts. These should never happen in
// the runtime, and if they do, they indicate a serious issue and
// should not be caught by user code.
//
// The panic{Index,Slice,divide,shift} functions are called by
// code generated by the compiler for out of bounds index expressions,
// out of bounds slice expressions, division by zero, and shift by negative.
// The panicdivide (again), panicoverflow, panicfloat, and panicmem
// functions are called by the signal handler when a signal occurs
// indicating the respective problem.
//
// Since panic{Index,Slice,shift} are never called directly, and
// since the runtime package should never have an out of bounds slice
// or array reference or negative shift, if we see those functions called from the
// runtime package we turn the panic into a throw. That will dump the
// entire runtime stack for easier debugging.
//
// The entry points called by the signal handler will be called from
// runtime.sigpanic, so we can't disallow calls from the runtime to
// these (they always look like they're called from the runtime).
// Hence, for these, we just check for clearly bad runtime conditions.
//
// The panic{Index,Slice} functions are implemented in assembly and tail call
// to the goPanic{Index,Slice} functions below. This is done so we can use
// a space-minimal register calling convention.

// failures in the comparisons for s[x], 0 <= x < y (y == len(s))
//
//go:yeswritebarrierrec
func goPanicIndex( int,  int) {
	panicCheck1(getcallerpc(), "index out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsIndex})
}

//go:yeswritebarrierrec
func goPanicIndexU( uint,  int) {
	panicCheck1(getcallerpc(), "index out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsIndex})
}

// failures in the comparisons for s[:x], 0 <= x <= y (y == len(s) or cap(s))
//
//go:yeswritebarrierrec
func goPanicSliceAlen( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSliceAlen})
}

//go:yeswritebarrierrec
func goPanicSliceAlenU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSliceAlen})
}

//go:yeswritebarrierrec
func goPanicSliceAcap( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSliceAcap})
}

//go:yeswritebarrierrec
func goPanicSliceAcapU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSliceAcap})
}

// failures in the comparisons for s[x:y], 0 <= x <= y
//
//go:yeswritebarrierrec
func goPanicSliceB( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSliceB})
}

//go:yeswritebarrierrec
func goPanicSliceBU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSliceB})
}

// failures in the comparisons for s[::x], 0 <= x <= y (y == len(s) or cap(s))
func goPanicSlice3Alen( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSlice3Alen})
}
func goPanicSlice3AlenU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSlice3Alen})
}
func goPanicSlice3Acap( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSlice3Acap})
}
func goPanicSlice3AcapU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSlice3Acap})
}

// failures in the comparisons for s[:x:y], 0 <= x <= y
func goPanicSlice3B( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSlice3B})
}
func goPanicSlice3BU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSlice3B})
}

// failures in the comparisons for s[x:y:], 0 <= x <= y
func goPanicSlice3C( int,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsSlice3C})
}
func goPanicSlice3CU( uint,  int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(), signed: false, y: , code: boundsSlice3C})
}

// failures in the conversion ([x]T)(s) or (*[x]T)(s), 0 <= x <= y, y == len(s)
func goPanicSliceConvert( int,  int) {
	panicCheck1(getcallerpc(), "slice length too short to convert to array or pointer to array")
	panic(boundsError{x: int64(), signed: true, y: , code: boundsConvert})
}

// Implemented in assembly, as they take arguments in registers.
// Declared here to mark them as ABIInternal.
func panicIndex( int,  int)
func panicIndexU( uint,  int)
func panicSliceAlen( int,  int)
func panicSliceAlenU( uint,  int)
func panicSliceAcap( int,  int)
func panicSliceAcapU( uint,  int)
func panicSliceB( int,  int)
func panicSliceBU( uint,  int)
func panicSlice3Alen( int,  int)
func panicSlice3AlenU( uint,  int)
func panicSlice3Acap( int,  int)
func panicSlice3AcapU( uint,  int)
func panicSlice3B( int,  int)
func panicSlice3BU( uint,  int)
func panicSlice3C( int,  int)
func panicSlice3CU( uint,  int)
func panicSliceConvert( int,  int)

var shiftError = error(errorString("negative shift amount"))

//go:yeswritebarrierrec
func panicshift() {
	panicCheck1(getcallerpc(), "negative shift amount")
	panic(shiftError)
}

var divideError = error(errorString("integer divide by zero"))

//go:yeswritebarrierrec
func panicdivide() {
	panicCheck2("integer divide by zero")
	panic(divideError)
}

var overflowError = error(errorString("integer overflow"))

func panicoverflow() {
	panicCheck2("integer overflow")
	panic(overflowError)
}

var floatError = error(errorString("floating point error"))

func panicfloat() {
	panicCheck2("floating point error")
	panic(floatError)
}

var memoryError = error(errorString("invalid memory address or nil pointer dereference"))

func panicmem() {
	panicCheck2("invalid memory address or nil pointer dereference")
	panic(memoryError)
}

func panicmemAddr( uintptr) {
	panicCheck2("invalid memory address or nil pointer dereference")
	panic(errorAddressString{msg: "invalid memory address or nil pointer dereference", addr: })
}

// Create a new deferred function fn, which has no arguments and results.
// The compiler turns a defer statement into a call to this.
func deferproc( func()) {
	 := getg()
	if .m.curg !=  {
		// go code on the system stack can't defer
		throw("defer on system stack")
	}

	 := newdefer()
	.link = ._defer
	._defer = 
	.fn = 
	.pc = getcallerpc()
	// We must not be preempted between calling getcallersp and
	// storing it to d.sp because getcallersp's result is a
	// uintptr stack pointer.
	.sp = getcallersp()

	// deferproc returns 0 normally.
	// a deferred func that stops a panic
	// makes the deferproc return 1.
	// the code the compiler generates always
	// checks the return value and jumps to the
	// end of the function if deferproc returns != 0.
	return0()
	// No code can go here - the C return register has
	// been set and must not be clobbered.
}

var rangeExitError = error(errorString("range function continued iteration after exit"))

//go:noinline
func panicrangeexit() {
	panic(rangeExitError)
}

// deferrangefunc is called by functions that are about to
// execute a range-over-function loop in which the loop body
// may execute a defer statement. That defer needs to add to
// the chain for the current function, not the func literal synthesized
// to represent the loop body. To do that, the original function
// calls deferrangefunc to obtain an opaque token representing
// the current frame, and then the loop body uses deferprocat
// instead of deferproc to add to that frame's defer lists.
//
// The token is an 'any' with underlying type *atomic.Pointer[_defer].
// It is the atomically-updated head of a linked list of _defer structs
// representing deferred calls. At the same time, we create a _defer
// struct on the main g._defer list with d.head set to this head pointer.
//
// The g._defer list is now a linked list of deferred calls,
// but an atomic list hanging off:
//
//		g._defer => d4 -> d3 -> drangefunc -> d2 -> d1 -> nil
//	                             | .head
//	                             |
//	                             +--> dY -> dX -> nil
//
// with each -> indicating a d.link pointer, and where drangefunc
// has the d.rangefunc = true bit set.
// Note that the function being ranged over may have added
// its own defers (d4 and d3), so drangefunc need not be at the
// top of the list when deferprocat is used. This is why we pass
// the atomic head explicitly.
//
// To keep misbehaving programs from crashing the runtime,
// deferprocat pushes new defers onto the .head list atomically.
// The fact that it is a separate list from the main goroutine
// defer list means that the main goroutine's defers can still
// be handled non-atomically.
//
// In the diagram, dY and dX are meant to be processed when
// drangefunc would be processed, which is to say the defer order
// should be d4, d3, dY, dX, d2, d1. To make that happen,
// when defer processing reaches a d with rangefunc=true,
// it calls deferconvert to atomically take the extras
// away from d.head and then adds them to the main list.
//
// That is, deferconvert changes this list:
//
//		g._defer => drangefunc -> d2 -> d1 -> nil
//	                 | .head
//	                 |
//	                 +--> dY -> dX -> nil
//
// into this list:
//
//	g._defer => dY -> dX -> d2 -> d1 -> nil
//
// It also poisons *drangefunc.head so that any future
// deferprocat using that head will throw.
// (The atomic head is ordinary garbage collected memory so that
// it's not a problem if user code holds onto it beyond
// the lifetime of drangefunc.)
//
// TODO: We could arrange for the compiler to call into the
// runtime after the loop finishes normally, to do an eager
// deferconvert, which would catch calling the loop body
// and having it defer after the loop is done. If we have a
// more general catch of loop body misuse, though, this
// might not be worth worrying about in addition.
//
// See also ../cmd/compile/internal/rangefunc/rewrite.go.
func deferrangefunc() any {
	 := getg()
	if .m.curg !=  {
		// go code on the system stack can't defer
		throw("defer on system stack")
	}

	 := newdefer()
	.link = ._defer
	._defer = 
	.pc = getcallerpc()
	// We must not be preempted between calling getcallersp and
	// storing it to d.sp because getcallersp's result is a
	// uintptr stack pointer.
	.sp = getcallersp()

	.rangefunc = true
	.head = new(atomic.Pointer[_defer])

	return .head
}

// badDefer returns a fixed bad defer pointer for poisoning an atomic defer list head.
func badDefer() *_defer {
	return (*_defer)(unsafe.Pointer(uintptr(1)))
}

// deferprocat is like deferproc but adds to the atomic list represented by frame.
// See the doc comment for deferrangefunc for details.
func deferprocat( func(),  any) {
	 := .(*atomic.Pointer[_defer])
	if raceenabled {
		racewritepc(unsafe.Pointer(), getcallerpc(), abi.FuncPCABIInternal())
	}
	 := newdefer()
	.fn = 
	for {
		.link = .Load()
		if .link == badDefer() {
			throw("defer after range func returned")
		}
		if .CompareAndSwap(.link, ) {
			break
		}
	}

	// Must be last - see deferproc above.
	return0()
}

// deferconvert converts a rangefunc defer list into an ordinary list.
// See the doc comment for deferrangefunc for details.
func deferconvert( *_defer) *_defer {
	 := .head
	if raceenabled {
		racereadpc(unsafe.Pointer(), getcallerpc(), abi.FuncPCABIInternal())
	}
	 := .link
	.rangefunc = false
	 := 

	for {
		 = .Load()
		if .CompareAndSwap(, badDefer()) {
			break
		}
	}
	if  == nil {
		freedefer()
		return 
	}
	for  := ; ;  = .link {
		.sp = .sp
		.pc = .pc
		if .link == nil {
			.link = 
			break
		}
	}
	freedefer()
	return 
}

// deferprocStack queues a new deferred function with a defer record on the stack.
// The defer record must have its fn field initialized.
// All other fields can contain junk.
// Nosplit because of the uninitialized pointer fields on the stack.
//
//go:nosplit
func deferprocStack( *_defer) {
	 := getg()
	if .m.curg !=  {
		// go code on the system stack can't defer
		throw("defer on system stack")
	}
	// fn is already set.
	// The other fields are junk on entry to deferprocStack and
	// are initialized here.
	.heap = false
	.rangefunc = false
	.sp = getcallersp()
	.pc = getcallerpc()
	// The lines below implement:
	//   d.panic = nil
	//   d.fd = nil
	//   d.link = gp._defer
	//   d.head = nil
	//   gp._defer = d
	// But without write barriers. The first three are writes to
	// the stack so they don't need a write barrier, and furthermore
	// are to uninitialized memory, so they must not use a write barrier.
	// The fourth write does not require a write barrier because we
	// explicitly mark all the defer structures, so we don't need to
	// keep track of pointers to them with a write barrier.
	*(*uintptr)(unsafe.Pointer(&.link)) = uintptr(unsafe.Pointer(._defer))
	*(*uintptr)(unsafe.Pointer(&.head)) = 0
	*(*uintptr)(unsafe.Pointer(&._defer)) = uintptr(unsafe.Pointer())

	return0()
	// No code can go here - the C return register has
	// been set and must not be clobbered.
}

// Each P holds a pool for defers.

// Allocate a Defer, usually using per-P pool.
// Each defer must be released with freedefer.  The defer is not
// added to any defer chain yet.
func newdefer() *_defer {
	var  *_defer
	 := acquirem()
	 := .p.ptr()
	if len(.deferpool) == 0 && sched.deferpool != nil {
		lock(&sched.deferlock)
		for len(.deferpool) < cap(.deferpool)/2 && sched.deferpool != nil {
			 := sched.deferpool
			sched.deferpool = .link
			.link = nil
			.deferpool = append(.deferpool, )
		}
		unlock(&sched.deferlock)
	}
	if  := len(.deferpool);  > 0 {
		 = .deferpool[-1]
		.deferpool[-1] = nil
		.deferpool = .deferpool[:-1]
	}
	releasem()
	,  = nil, nil

	if  == nil {
		// Allocate new defer.
		 = new(_defer)
	}
	.heap = true
	return 
}

// Free the given defer.
// The defer cannot be used after this call.
//
// This is nosplit because the incoming defer is in a perilous state.
// It's not on any defer list, so stack copying won't adjust stack
// pointers in it (namely, d.link). Hence, if we were to copy the
// stack, d could then contain a stale pointer.
//
//go:nosplit
func freedefer( *_defer) {
	.link = nil
	// After this point we can copy the stack.

	if .fn != nil {
		freedeferfn()
	}
	if !.heap {
		return
	}

	 := acquirem()
	 := .p.ptr()
	if len(.deferpool) == cap(.deferpool) {
		// Transfer half of local cache to the central cache.
		var ,  *_defer
		for len(.deferpool) > cap(.deferpool)/2 {
			 := len(.deferpool)
			 := .deferpool[-1]
			.deferpool[-1] = nil
			.deferpool = .deferpool[:-1]
			if  == nil {
				 = 
			} else {
				.link = 
			}
			 = 
		}
		lock(&sched.deferlock)
		.link = sched.deferpool
		sched.deferpool = 
		unlock(&sched.deferlock)
	}

	* = _defer{}

	.deferpool = append(.deferpool, )

	releasem()
	,  = nil, nil
}

// Separate function so that it can split stack.
// Windows otherwise runs out of stack space.
func freedeferfn() {
	// fn must be cleared before d is unlinked from gp.
	throw("freedefer with d.fn != nil")
}

// deferreturn runs deferred functions for the caller's frame.
// The compiler inserts a call to this at the end of any
// function which calls defer.
func deferreturn() {
	var  _panic
	.deferreturn = true

	.start(getcallerpc(), unsafe.Pointer(getcallersp()))
	for {
		,  := .nextDefer()
		if ! {
			break
		}
		()
	}
}

// Goexit terminates the goroutine that calls it. No other goroutine is affected.
// Goexit runs all deferred calls before terminating the goroutine. Because Goexit
// is not a panic, any recover calls in those deferred functions will return nil.
//
// Calling Goexit from the main goroutine terminates that goroutine
// without func main returning. Since func main has not returned,
// the program continues execution of other goroutines.
// If all other goroutines exit, the program crashes.
func () {
	// Create a panic object for Goexit, so we can recognize when it might be
	// bypassed by a recover().
	var  _panic
	.goexit = true

	.start(getcallerpc(), unsafe.Pointer(getcallersp()))
	for {
		,  := .nextDefer()
		if ! {
			break
		}
		()
	}

	goexit1()
}

// Call all Error and String methods before freezing the world.
// Used when crashing with panicking.
func preprintpanics( *_panic) {
	defer func() {
		 := "panic while printing panic value"
		switch r := recover().(type) {
		case nil:
			// nothing to do
		case string:
			throw( + ": " + )
		default:
			throw( + ": type " + toRType(efaceOf(&)._type).string())
		}
	}()
	for  != nil {
		switch v := .arg.(type) {
		case error:
			.arg = .Error()
		case stringer:
			.arg = .String()
		}
		 = .link
	}
}

// Print all currently active panics. Used when crashing.
// Should only be called after preprintpanics.
func printpanics( *_panic) {
	if .link != nil {
		(.link)
		if !.link.goexit {
			print("\t")
		}
	}
	if .goexit {
		return
	}
	print("panic: ")
	printany(.arg)
	if .recovered {
		print(" [recovered]")
	}
	print("\n")
}

// readvarintUnsafe reads the uint32 in varint format starting at fd, and returns the
// uint32 and a pointer to the byte following the varint.
//
// The implementation is the same with runtime.readvarint, except that this function
// uses unsafe.Pointer for speed.
func readvarintUnsafe( unsafe.Pointer) (uint32, unsafe.Pointer) {
	var  uint32
	var  int
	for {
		 := *(*uint8)()
		 = add(, unsafe.Sizeof())
		if  < 128 {
			return  + uint32()<<, 
		}
		 += uint32(&0x7F) << ( & 31)
		 += 7
		if  > 28 {
			panic("Bad varint")
		}
	}
}

// A PanicNilError happens when code calls panic(nil).
//
// Before Go 1.21, programs that called panic(nil) observed recover returning nil.
// Starting in Go 1.21, programs that call panic(nil) observe recover returning a *PanicNilError.
// Programs can change back to the old behavior by setting GODEBUG=panicnil=1.
type PanicNilError struct {
	// This field makes PanicNilError structurally different from
	// any other struct in this package, and the _ makes it different
	// from any struct in other packages too.
	// This avoids any accidental conversions being possible
	// between this struct and some other struct sharing the same fields,
	// like happened in go.dev/issue/56603.
	_ [0]*PanicNilError
}

func (*PanicNilError) () string { return "panic called with nil argument" }
func (*PanicNilError) () {}

var panicnil = &godebugInc{name: "panicnil"}

// The implementation of the predeclared function panic.
func gopanic( any) {
	if  == nil {
		if debug.panicnil.Load() != 1 {
			 = new(PanicNilError)
		} else {
			panicnil.IncNonDefault()
		}
	}

	 := getg()
	if .m.curg !=  {
		print("panic: ")
		printany()
		print("\n")
		throw("panic on system stack")
	}

	if .m.mallocing != 0 {
		print("panic: ")
		printany()
		print("\n")
		throw("panic during malloc")
	}
	if .m.preemptoff != "" {
		print("panic: ")
		printany()
		print("\n")
		print("preempt off reason: ")
		print(.m.preemptoff)
		print("\n")
		throw("panic during preemptoff")
	}
	if .m.locks != 0 {
		print("panic: ")
		printany()
		print("\n")
		throw("panic holding locks")
	}

	var  _panic
	.arg = 

	runningPanicDefers.Add(1)

	.start(getcallerpc(), unsafe.Pointer(getcallersp()))
	for {
		,  := .nextDefer()
		if ! {
			break
		}
		()
	}

	// ran out of deferred calls - old-school panic now
	// Because it is unsafe to call arbitrary user code after freezing
	// the world, we call preprintpanics to invoke all necessary Error
	// and String methods to prepare the panic strings before startpanic.
	preprintpanics(&)

	fatalpanic(&)   // should not return
	*(*int)(nil) = 0 // not reached
}

// start initializes a panic to start unwinding the stack.
//
// If p.goexit is true, then start may return multiple times.
func ( *_panic) ( uintptr,  unsafe.Pointer) {
	 := getg()

	// Record the caller's PC and SP, so recovery can identify panics
	// that have been recovered. Also, so that if p is from Goexit, we
	// can restart its defer processing loop if a recovered panic tries
	// to jump past it.
	.startPC = getcallerpc()
	.startSP = unsafe.Pointer(getcallersp())

	if .deferreturn {
		.sp = 

		if  := (*savedOpenDeferState)(.param);  != nil {
			// recovery saved some state for us, so that we can resume
			// calling open-coded defers without unwinding the stack.

			.param = nil

			.retpc = .retpc
			.deferBitsPtr = (*byte)(add(, .deferBitsOffset))
			.slotsPtr = add(, .slotsOffset)
		}

		return
	}

	.link = ._panic
	._panic = (*_panic)(noescape(unsafe.Pointer()))

	// Initialize state machine, and find the first frame with a defer.
	//
	// Note: We could use startPC and startSP here, but callers will
	// never have defer statements themselves. By starting at their
	// caller instead, we avoid needing to unwind through an extra
	// frame. It also somewhat simplifies the terminating condition for
	// deferreturn.
	.lr, .fp = , 
	.nextFrame()
}

// nextDefer returns the next deferred function to invoke, if any.
//
// Note: The "ok bool" result is necessary to correctly handle when
// the deferred function itself was nil (e.g., "defer (func())(nil)").
func ( *_panic) () (func(), bool) {
	 := getg()

	if !.deferreturn {
		if ._panic !=  {
			throw("bad panic stack")
		}

		if .recovered {
			mcall(recovery) // does not return
			throw("recovery failed")
		}
	}

	// The assembler adjusts p.argp in wrapper functions that shouldn't
	// be visible to recover(), so we need to restore it each iteration.
	.argp = add(.startSP, sys.MinFrameSize)

	for {
		for .deferBitsPtr != nil {
			 := *.deferBitsPtr

			// Check whether any open-coded defers are still pending.
			//
			// Note: We need to check this upfront (rather than after
			// clearing the top bit) because it's possible that Goexit
			// invokes a deferred call, and there were still more pending
			// open-coded defers in the frame; but then the deferred call
			// panic and invoked the remaining defers in the frame, before
			// recovering and restarting the Goexit loop.
			if  == 0 {
				.deferBitsPtr = nil
				break
			}

			// Find index of top bit set.
			 := 7 - uintptr(sys.LeadingZeros8())

			// Clear bit and store it back.
			 &^= 1 << 
			*.deferBitsPtr = 

			return *(*func())(add(.slotsPtr, *goarch.PtrSize)), true
		}

	:
		if  := ._defer;  != nil && .sp == uintptr(.sp) {
			if .rangefunc {
				._defer = deferconvert()
				goto 
			}

			 := .fn
			.fn = nil

			// TODO(mdempsky): Instead of having each deferproc call have
			// its own "deferreturn(); return" sequence, we should just make
			// them reuse the one we emit for open-coded defers.
			.retpc = .pc

			// Unlink and free.
			._defer = .link
			freedefer()

			return , true
		}

		if !.nextFrame() {
			return nil, false
		}
	}
}

// nextFrame finds the next frame that contains deferred calls, if any.
func ( *_panic) () ( bool) {
	if .lr == 0 {
		return false
	}

	 := getg()
	systemstack(func() {
		var  uintptr
		if  := ._defer;  != nil {
			 = .sp
		}

		var  unwinder
		.initAt(.lr, uintptr(.fp), 0, , 0)
		for {
			if !.valid() {
				.lr = 0
				return // ok == false
			}

			// TODO(mdempsky): If we populate u.frame.fn.deferreturn for
			// every frame containing a defer (not just open-coded defers),
			// then we can simply loop until we find the next frame where
			// it's non-zero.

			if .frame.sp ==  {
				break // found a frame with linked defers
			}

			if .initOpenCodedDefers(.frame.fn, unsafe.Pointer(.frame.varp)) {
				break // found a frame with open-coded defers
			}

			.next()
		}

		.lr = .frame.lr
		.sp = unsafe.Pointer(.frame.sp)
		.fp = unsafe.Pointer(.frame.fp)

		 = true
	})

	return
}

func ( *_panic) ( funcInfo,  unsafe.Pointer) bool {
	 := funcdata(, abi.FUNCDATA_OpenCodedDeferInfo)
	if  == nil {
		return false
	}

	if .deferreturn == 0 {
		throw("missing deferreturn")
	}

	,  := readvarintUnsafe()
	 := (*uint8)(add(, -uintptr()))
	if * == 0 {
		return false // has open-coded defers, but none pending
	}

	,  := readvarintUnsafe()

	.retpc = .entry() + uintptr(.deferreturn)
	.deferBitsPtr = 
	.slotsPtr = add(, -uintptr())

	return true
}

// The implementation of the predeclared function recover.
// Cannot split the stack because it needs to reliably
// find the stack segment of its caller.
//
// TODO(rsc): Once we commit to CopyStackAlways,
// this doesn't need to be nosplit.
//
//go:nosplit
func gorecover( uintptr) any {
	// Must be in a function running as part of a deferred call during the panic.
	// Must be called from the topmost function of the call
	// (the function used in the defer statement).
	// p.argp is the argument pointer of that topmost deferred function call.
	// Compare against argp reported by caller.
	// If they match, the caller is the one who can recover.
	 := getg()
	 := ._panic
	if  != nil && !.goexit && !.recovered &&  == uintptr(.argp) {
		.recovered = true
		return .arg
	}
	return nil
}

//go:linkname sync_throw sync.throw
func sync_throw( string) {
	throw()
}

//go:linkname sync_fatal sync.fatal
func sync_fatal( string) {
	fatal()
}

// throw triggers a fatal error that dumps a stack trace and exits.
//
// throw should be used for runtime-internal fatal errors where Go itself,
// rather than user code, may be at fault for the failure.
//
//go:nosplit
func throw( string) {
	// Everything throw does should be recursively nosplit so it
	// can be called even when it's unsafe to grow the stack.
	systemstack(func() {
		print("fatal error: ", , "\n")
	})

	fatalthrow(throwTypeRuntime)
}

// fatal triggers a fatal error that dumps a stack trace and exits.
//
// fatal is equivalent to throw, but is used when user code is expected to be
// at fault for the failure, such as racing map writes.
//
// fatal does not include runtime frames, system goroutines, or frame metadata
// (fp, sp, pc) in the stack trace unless GOTRACEBACK=system or higher.
//
//go:nosplit
func fatal( string) {
	// Everything fatal does should be recursively nosplit so it
	// can be called even when it's unsafe to grow the stack.
	systemstack(func() {
		print("fatal error: ", , "\n")
	})

	fatalthrow(throwTypeUser)
}

// runningPanicDefers is non-zero while running deferred functions for panic.
// This is used to try hard to get a panic stack trace out when exiting.
var runningPanicDefers atomic.Uint32

// panicking is non-zero when crashing the program for an unrecovered panic.
var panicking atomic.Uint32

// paniclk is held while printing the panic information and stack trace,
// so that two concurrent panics don't overlap their output.
var paniclk mutex

// Unwind the stack after a deferred function calls recover
// after a panic. Then arrange to continue running as though
// the caller of the deferred function returned normally.
//
// However, if unwinding the stack would skip over a Goexit call, we
// return into the Goexit loop instead, so it can continue processing
// defers instead.
func recovery( *g) {
	 := ._panic
	, ,  := .retpc, uintptr(.sp), uintptr(.fp)
	,  := , .deferBitsPtr != nil && *.deferBitsPtr != 0

	// Unwind the panic stack.
	for ;  != nil && uintptr(.startSP) < ;  = .link {
		// Don't allow jumping past a pending Goexit.
		// Instead, have its _panic.start() call return again.
		//
		// TODO(mdempsky): In this case, Goexit will resume walking the
		// stack where it left off, which means it will need to rewalk
		// frames that we've already processed.
		//
		// There's a similar issue with nested panics, when the inner
		// panic supercedes the outer panic. Again, we end up needing to
		// walk the same stack frames.
		//
		// These are probably pretty rare occurrences in practice, and
		// they don't seem any worse than the existing logic. But if we
		// move the unwinding state into _panic, we could detect when we
		// run into where the last panic started, and then just pick up
		// where it left off instead.
		//
		// With how subtle defer handling is, this might not actually be
		// worthwhile though.
		if .goexit {
			,  = .startPC, uintptr(.startSP)
			 = false // goexit is unwinding the stack anyway
			break
		}

		runningPanicDefers.Add(-1)
	}
	._panic = 

	if  == nil { // must be done with signal
		.sig = 0
	}

	if .param != nil {
		throw("unexpected gp.param")
	}
	if  {
		// If we're returning to deferreturn and there are more open-coded
		// defers for it to call, save enough state for it to be able to
		// pick up where p0 left off.
		.param = unsafe.Pointer(&savedOpenDeferState{
			retpc: .retpc,

			// We need to save deferBitsPtr and slotsPtr too, but those are
			// stack pointers. To avoid issues around heap objects pointing
			// to the stack, save them as offsets from SP.
			deferBitsOffset: uintptr(unsafe.Pointer(.deferBitsPtr)) - uintptr(.sp),
			slotsOffset:     uintptr(.slotsPtr) - uintptr(.sp),
		})
	}

	// TODO(mdempsky): Currently, we rely on frames containing "defer"
	// to end with "CALL deferreturn; RET". This allows deferreturn to
	// finish running any pending defers in the frame.
	//
	// But we should be able to tell whether there are still pending
	// defers here. If there aren't, we can just jump directly to the
	// "RET" instruction. And if there are, we don't need an actual
	// "CALL deferreturn" instruction; we can simulate it with something
	// like:
	//
	//	if usesLR {
	//		lr = pc
	//	} else {
	//		sp -= sizeof(pc)
	//		*(*uintptr)(sp) = pc
	//	}
	//	pc = funcPC(deferreturn)
	//
	// So that we effectively tail call into deferreturn, such that it
	// then returns to the simple "RET" epilogue. That would save the
	// overhead of the "deferreturn" call when there aren't actually any
	// pending defers left, and shrink the TEXT size of compiled
	// binaries. (Admittedly, both of these are modest savings.)

	// Ensure we're recovering within the appropriate stack.
	if  != 0 && ( < .stack.lo || .stack.hi < ) {
		print("recover: ", hex(), " not in [", hex(.stack.lo), ", ", hex(.stack.hi), "]\n")
		throw("bad recovery")
	}

	// Make the deferproc for this d return again,
	// this time returning 1. The calling function will
	// jump to the standard return epilogue.
	.sched.sp = 
	.sched.pc = 
	.sched.lr = 0
	// Restore the bp on platforms that support frame pointers.
	// N.B. It's fine to not set anything for platforms that don't
	// support frame pointers, since nothing consumes them.
	switch {
	case goarch.IsAmd64 != 0:
		// on x86, fp actually points one word higher than the top of
		// the frame since the return address is saved on the stack by
		// the caller
		.sched.bp =  - 2*goarch.PtrSize
	case goarch.IsArm64 != 0:
		// on arm64, the architectural bp points one word higher
		// than the sp. fp is totally useless to us here, because it
		// only gets us to the caller's fp.
		.sched.bp =  - goarch.PtrSize
	}
	.sched.ret = 1
	gogo(&.sched)
}

// fatalthrow implements an unrecoverable runtime throw. It freezes the
// system, prints stack traces starting from its caller, and terminates the
// process.
//
//go:nosplit
func fatalthrow( throwType) {
	 := getcallerpc()
	 := getcallersp()
	 := getg()

	if .m.throwing == throwTypeNone {
		.m.throwing = 
	}

	// Switch to the system stack to avoid any stack growth, which may make
	// things worse if the runtime is in a bad state.
	systemstack(func() {
		if isSecureMode() {
			exit(2)
		}

		startpanic_m()

		if dopanic_m(, , ) {
			// crash uses a decent amount of nosplit stack and we're already
			// low on stack in throw, so crash on the system stack (unlike
			// fatalpanic).
			crash()
		}

		exit(2)
	})

	*(*int)(nil) = 0 // not reached
}

// fatalpanic implements an unrecoverable panic. It is like fatalthrow, except
// that if msgs != nil, fatalpanic also prints panic messages and decrements
// runningPanicDefers once main is blocked from exiting.
//
//go:nosplit
func fatalpanic( *_panic) {
	 := getcallerpc()
	 := getcallersp()
	 := getg()
	var  bool
	// Switch to the system stack to avoid any stack growth, which
	// may make things worse if the runtime is in a bad state.
	systemstack(func() {
		if startpanic_m() &&  != nil {
			// There were panic messages and startpanic_m
			// says it's okay to try to print them.

			// startpanic_m set panicking, which will
			// block main from exiting, so now OK to
			// decrement runningPanicDefers.
			runningPanicDefers.Add(-1)

			printpanics()
		}

		 = dopanic_m(, , )
	})

	if  {
		// By crashing outside the above systemstack call, debuggers
		// will not be confused when generating a backtrace.
		// Function crash is marked nosplit to avoid stack growth.
		crash()
	}

	systemstack(func() {
		exit(2)
	})

	*(*int)(nil) = 0 // not reached
}

// startpanic_m prepares for an unrecoverable panic.
//
// It returns true if panic messages should be printed, or false if
// the runtime is in bad shape and should just print stacks.
//
// It must not have write barriers even though the write barrier
// explicitly ignores writes once dying > 0. Write barriers still
// assume that g.m.p != nil, and this function may not have P
// in some contexts (e.g. a panic in a signal handler for a signal
// sent to an M with no P).
//
//go:nowritebarrierrec
func startpanic_m() bool {
	 := getg()
	if mheap_.cachealloc.size == 0 { // very early
		print("runtime: panic before malloc heap initialized\n")
	}
	// Disallow malloc during an unrecoverable panic. A panic
	// could happen in a signal handler, or in a throw, or inside
	// malloc itself. We want to catch if an allocation ever does
	// happen (even if we're not in one of these situations).
	.m.mallocing++

	// If we're dying because of a bad lock count, set it to a
	// good lock count so we don't recursively panic below.
	if .m.locks < 0 {
		.m.locks = 1
	}

	switch .m.dying {
	case 0:
		// Setting dying >0 has the side-effect of disabling this G's writebuf.
		.m.dying = 1
		panicking.Add(1)
		lock(&paniclk)
		if debug.schedtrace > 0 || debug.scheddetail > 0 {
			schedtrace(true)
		}
		freezetheworld()
		return true
	case 1:
		// Something failed while panicking.
		// Just print a stack trace and exit.
		.m.dying = 2
		print("panic during panic\n")
		return false
	case 2:
		// This is a genuine bug in the runtime, we couldn't even
		// print the stack trace successfully.
		.m.dying = 3
		print("stack trace unavailable\n")
		exit(4)
		fallthrough
	default:
		// Can't even print! Just exit.
		exit(5)
		return false // Need to return something.
	}
}

var didothers bool
var deadlock mutex

// gp is the crashing g running on this M, but may be a user G, while getg() is
// always g0.
func dopanic_m( *g, ,  uintptr) bool {
	if .sig != 0 {
		 := signame(.sig)
		if  != "" {
			print("[signal ", )
		} else {
			print("[signal ", hex(.sig))
		}
		print(" code=", hex(.sigcode0), " addr=", hex(.sigcode1), " pc=", hex(.sigpc), "]\n")
	}

	, ,  := gotraceback()
	if  > 0 {
		if  != .m.curg {
			 = true
		}
		if  != .m.g0 {
			print("\n")
			goroutineheader()
			traceback(, , 0, )
		} else if  >= 2 || .m.throwing >= throwTypeRuntime {
			print("\nruntime stack:\n")
			traceback(, , 0, )
		}
		if !didothers &&  {
			didothers = true
			tracebackothers()
		}
	}
	unlock(&paniclk)

	if panicking.Add(-1) != 0 {
		// Some other m is panicking too.
		// Let it print what it needs to print.
		// Wait forever without chewing up cpu.
		// It will exit when it's done.
		lock(&deadlock)
		lock(&deadlock)
	}

	printDebugLog()

	return 
}

// canpanic returns false if a signal should throw instead of
// panicking.
//
//go:nosplit
func canpanic() bool {
	 := getg()
	 := acquirem()

	// Is it okay for gp to panic instead of crashing the program?
	// Yes, as long as it is running Go code, not runtime code,
	// and not stuck in a system call.
	if  != .curg {
		releasem()
		return false
	}
	// N.B. mp.locks != 1 instead of 0 to account for acquirem.
	if .locks != 1 || .mallocing != 0 || .throwing != throwTypeNone || .preemptoff != "" || .dying != 0 {
		releasem()
		return false
	}
	 := readgstatus()
	if &^_Gscan != _Grunning || .syscallsp != 0 {
		releasem()
		return false
	}
	if GOOS == "windows" && .libcallsp != 0 {
		releasem()
		return false
	}
	releasem()
	return true
}

// shouldPushSigpanic reports whether pc should be used as sigpanic's
// return PC (pushing a frame for the call). Otherwise, it should be
// left alone so that LR is used as sigpanic's return PC, effectively
// replacing the top-most frame with sigpanic. This is used by
// preparePanic.
func shouldPushSigpanic( *g, ,  uintptr) bool {
	if  == 0 {
		// Probably a call to a nil func. The old LR is more
		// useful in the stack trace. Not pushing the frame
		// will make the trace look like a call to sigpanic
		// instead. (Otherwise the trace will end at sigpanic
		// and we won't get to see who faulted.)
		return false
	}
	// If we don't recognize the PC as code, but we do recognize
	// the link register as code, then this assumes the panic was
	// caused by a call to non-code. In this case, we want to
	// ignore this call to make unwinding show the context.
	//
	// If we running C code, we're not going to recognize pc as a
	// Go function, so just assume it's good. Otherwise, traceback
	// may try to read a stale LR that looks like a Go code
	// pointer and wander into the woods.
	if .m.incgo || findfunc().valid() {
		// This wasn't a bad call, so use PC as sigpanic's
		// return PC.
		return true
	}
	if findfunc().valid() {
		// This was a bad call, but the LR is good, so use the
		// LR as sigpanic's return PC.
		return false
	}
	// Neither the PC or LR is good. Hopefully pushing a frame
	// will work.
	return true
}

// isAbortPC reports whether pc is the program counter at which
// runtime.abort raises a signal.
//
// It is nosplit because it's part of the isgoexception
// implementation.
//
//go:nosplit
func isAbortPC( uintptr) bool {
	 := findfunc()
	if !.valid() {
		return false
	}
	return .funcID == abi.FuncID_abort
}