Source File
mheap.go
Belonging Package
runtime
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Page heap.
//
// See malloc.go for overview.
package runtime
import (
)
const (
// minPhysPageSize is a lower-bound on the physical page size. The
// true physical page size may be larger than this. In contrast,
// sys.PhysPageSize is an upper-bound on the physical page size.
minPhysPageSize = 4096
// maxPhysPageSize is the maximum page size the runtime supports.
maxPhysPageSize = 512 << 10
// maxPhysHugePageSize sets an upper-bound on the maximum huge page size
// that the runtime supports.
maxPhysHugePageSize = pallocChunkBytes
// pagesPerReclaimerChunk indicates how many pages to scan from the
// pageInUse bitmap at a time. Used by the page reclaimer.
//
// Higher values reduce contention on scanning indexes (such as
// h.reclaimIndex), but increase the minimum latency of the
// operation.
//
// The time required to scan this many pages can vary a lot depending
// on how many spans are actually freed. Experimentally, it can
// scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only
// free spans at ~32 MB/ms. Using 512 pages bounds this at
// roughly 100µs.
//
// Must be a multiple of the pageInUse bitmap element size and
// must also evenly divide pagesPerArena.
pagesPerReclaimerChunk = 512
// physPageAlignedStacks indicates whether stack allocations must be
// physical page aligned. This is a requirement for MAP_STACK on
// OpenBSD.
physPageAlignedStacks = GOOS == "openbsd"
)
// Main malloc heap.
// The heap itself is the "free" and "scav" treaps,
// but all the other global data is here too.
//
// mheap must not be heap-allocated because it contains mSpanLists,
// which must not be heap-allocated.
type mheap struct {
_ sys.NotInHeap
// lock must only be acquired on the system stack, otherwise a g
// could self-deadlock if its stack grows with the lock held.
lock mutex
pages pageAlloc // page allocation data structure
sweepgen uint32 // sweep generation, see comment in mspan; written during STW
// allspans is a slice of all mspans ever created. Each mspan
// appears exactly once.
//
// The memory for allspans is manually managed and can be
// reallocated and move as the heap grows.
//
// In general, allspans is protected by mheap_.lock, which
// prevents concurrent access as well as freeing the backing
// store. Accesses during STW might not hold the lock, but
// must ensure that allocation cannot happen around the
// access (since that may free the backing store).
allspans []*mspan // all spans out there
// Proportional sweep
//
// These parameters represent a linear function from gcController.heapLive
// to page sweep count. The proportional sweep system works to
// stay in the black by keeping the current page sweep count
// above this line at the current gcController.heapLive.
//
// The line has slope sweepPagesPerByte and passes through a
// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
// any given time, the system is at (gcController.heapLive,
// pagesSwept) in this space.
//
// It is important that the line pass through a point we
// control rather than simply starting at a 0,0 origin
// because that lets us adjust sweep pacing at any time while
// accounting for current progress. If we could only adjust
// the slope, it would create a discontinuity in debt if any
// progress has already been made.
pagesInUse atomic.Uintptr // pages of spans in stats mSpanInUse
pagesSwept atomic.Uint64 // pages swept this cycle
pagesSweptBasis atomic.Uint64 // pagesSwept to use as the origin of the sweep ratio
sweepHeapLiveBasis uint64 // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without
sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
// Page reclaimer state
// reclaimIndex is the page index in allArenas of next page to
// reclaim. Specifically, it refers to page (i %
// pagesPerArena) of arena allArenas[i / pagesPerArena].
//
// If this is >= 1<<63, the page reclaimer is done scanning
// the page marks.
reclaimIndex atomic.Uint64
// reclaimCredit is spare credit for extra pages swept. Since
// the page reclaimer works in large chunks, it may reclaim
// more than requested. Any spare pages released go to this
// credit pool.
reclaimCredit atomic.Uintptr
_ cpu.CacheLinePad // prevents false-sharing between arenas and preceding variables
// arenas is the heap arena map. It points to the metadata for
// the heap for every arena frame of the entire usable virtual
// address space.
//
// Use arenaIndex to compute indexes into this array.
//
// For regions of the address space that are not backed by the
// Go heap, the arena map contains nil.
//
// Modifications are protected by mheap_.lock. Reads can be
// performed without locking; however, a given entry can
// transition from nil to non-nil at any time when the lock
// isn't held. (Entries never transitions back to nil.)
//
// In general, this is a two-level mapping consisting of an L1
// map and possibly many L2 maps. This saves space when there
// are a huge number of arena frames. However, on many
// platforms (even 64-bit), arenaL1Bits is 0, making this
// effectively a single-level map. In this case, arenas[0]
// will never be nil.
arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena
// arenasHugePages indicates whether arenas' L2 entries are eligible
// to be backed by huge pages.
arenasHugePages bool
// heapArenaAlloc is pre-reserved space for allocating heapArena
// objects. This is only used on 32-bit, where we pre-reserve
// this space to avoid interleaving it with the heap itself.
heapArenaAlloc linearAlloc
// arenaHints is a list of addresses at which to attempt to
// add more heap arenas. This is initially populated with a
// set of general hint addresses, and grown with the bounds of
// actual heap arena ranges.
arenaHints *arenaHint
// arena is a pre-reserved space for allocating heap arenas
// (the actual arenas). This is only used on 32-bit.
arena linearAlloc
// allArenas is the arenaIndex of every mapped arena. This can
// be used to iterate through the address space.
//
// Access is protected by mheap_.lock. However, since this is
// append-only and old backing arrays are never freed, it is
// safe to acquire mheap_.lock, copy the slice header, and
// then release mheap_.lock.
allArenas []arenaIdx
// sweepArenas is a snapshot of allArenas taken at the
// beginning of the sweep cycle. This can be read safely by
// simply blocking GC (by disabling preemption).
sweepArenas []arenaIdx
// markArenas is a snapshot of allArenas taken at the beginning
// of the mark cycle. Because allArenas is append-only, neither
// this slice nor its contents will change during the mark, so
// it can be read safely.
markArenas []arenaIdx
// curArena is the arena that the heap is currently growing
// into. This should always be physPageSize-aligned.
curArena struct {
base, end uintptr
}
// central free lists for small size classes.
// the padding makes sure that the mcentrals are
// spaced CacheLinePadSize bytes apart, so that each mcentral.lock
// gets its own cache line.
// central is indexed by spanClass.
central [numSpanClasses]struct {
mcentral mcentral
pad [(cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize) % cpu.CacheLinePadSize]byte
}
spanalloc fixalloc // allocator for span*
cachealloc fixalloc // allocator for mcache*
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
specialCleanupAlloc fixalloc // allocator for specialcleanup*
specialprofilealloc fixalloc // allocator for specialprofile*
specialReachableAlloc fixalloc // allocator for specialReachable
specialPinCounterAlloc fixalloc // allocator for specialPinCounter
specialWeakHandleAlloc fixalloc // allocator for specialWeakHandle
speciallock mutex // lock for special record allocators.
arenaHintAlloc fixalloc // allocator for arenaHints
// User arena state.
//
// Protected by mheap_.lock.
userArena struct {
// arenaHints is a list of addresses at which to attempt to
// add more heap arenas for user arena chunks. This is initially
// populated with a set of general hint addresses, and grown with
// the bounds of actual heap arena ranges.
arenaHints *arenaHint
// quarantineList is a list of user arena spans that have been set to fault, but
// are waiting for all pointers into them to go away. Sweeping handles
// identifying when this is true, and moves the span to the ready list.
quarantineList mSpanList
// readyList is a list of empty user arena spans that are ready for reuse.
readyList mSpanList
}
// cleanupID is a counter which is incremented each time a cleanup special is added
// to a span. It's used to create globally unique identifiers for individual cleanup.
// cleanupID is protected by mheap_.lock. It should only be incremented while holding
// the lock.
cleanupID uint64
unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
}
var mheap_ mheap
// A heapArena stores metadata for a heap arena. heapArenas are stored
// outside of the Go heap and accessed via the mheap_.arenas index.
type heapArena struct {
_ sys.NotInHeap
// spans maps from virtual address page ID within this arena to *mspan.
// For allocated spans, their pages map to the span itself.
// For free spans, only the lowest and highest pages map to the span itself.
// Internal pages map to an arbitrary span.
// For pages that have never been allocated, spans entries are nil.
//
// Modifications are protected by mheap.lock. Reads can be
// performed without locking, but ONLY from indexes that are
// known to contain in-use or stack spans. This means there
// must not be a safe-point between establishing that an
// address is live and looking it up in the spans array.
spans [pagesPerArena]*mspan
// pageInUse is a bitmap that indicates which spans are in
// state mSpanInUse. This bitmap is indexed by page number,
// but only the bit corresponding to the first page in each
// span is used.
//
// Reads and writes are atomic.
pageInUse [pagesPerArena / 8]uint8
// pageMarks is a bitmap that indicates which spans have any
// marked objects on them. Like pageInUse, only the bit
// corresponding to the first page in each span is used.
//
// Writes are done atomically during marking. Reads are
// non-atomic and lock-free since they only occur during
// sweeping (and hence never race with writes).
//
// This is used to quickly find whole spans that can be freed.
//
// TODO(austin): It would be nice if this was uint64 for
// faster scanning, but we don't have 64-bit atomic bit
// operations.
pageMarks [pagesPerArena / 8]uint8
// pageSpecials is a bitmap that indicates which spans have
// specials (finalizers or other). Like pageInUse, only the bit
// corresponding to the first page in each span is used.
//
// Writes are done atomically whenever a special is added to
// a span and whenever the last special is removed from a span.
// Reads are done atomically to find spans containing specials
// during marking.
pageSpecials [pagesPerArena / 8]uint8
// checkmarks stores the debug.gccheckmark state. It is only
// used if debug.gccheckmark > 0.
checkmarks *checkmarksMap
// zeroedBase marks the first byte of the first page in this
// arena which hasn't been used yet and is therefore already
// zero. zeroedBase is relative to the arena base.
// Increases monotonically until it hits heapArenaBytes.
//
// This field is sufficient to determine if an allocation
// needs to be zeroed because the page allocator follows an
// address-ordered first-fit policy.
//
// Read atomically and written with an atomic CAS.
zeroedBase uintptr
}
// arenaHint is a hint for where to grow the heap arenas. See
// mheap_.arenaHints.
type arenaHint struct {
_ sys.NotInHeap
addr uintptr
down bool
next *arenaHint
}
// An mspan is a run of pages.
//
// When a mspan is in the heap free treap, state == mSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
// If the mspan is in the heap scav treap, then in addition to the
// above scavenged == true. scavenged == false in all other cases.
//
// When a mspan is allocated, state == mSpanInUse or mSpanManual
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
// Every mspan is in one doubly-linked list, either in the mheap's
// busy list or one of the mcentral's span lists.
// An mspan representing actual memory has state mSpanInUse,
// mSpanManual, or mSpanFree. Transitions between these states are
// constrained as follows:
//
// - A span may transition from free to in-use or manual during any GC
// phase.
//
// - During sweeping (gcphase == _GCoff), a span may transition from
// in-use to free (as a result of sweeping) or manual to free (as a
// result of stacks being freed).
//
// - During GC (gcphase != _GCoff), a span *must not* transition from
// manual or in-use to free. Because concurrent GC may read a pointer
// and then look up its span, the span state must be monotonic.
//
// Setting mspan.state to mSpanInUse or mSpanManual must be done
// atomically and only after all other span fields are valid.
// Likewise, if inspecting a span is contingent on it being
// mSpanInUse, the state should be loaded atomically and checked
// before depending on other fields. This allows the garbage collector
// to safely deal with potentially invalid pointers, since resolving
// such pointers may race with a span being allocated.
type mSpanState uint8
const (
mSpanDead mSpanState = iota
mSpanInUse // allocated for garbage collected heap
mSpanManual // allocated for manual management (e.g., stack allocator)
)
// mSpanStateNames are the names of the span states, indexed by
// mSpanState.
var mSpanStateNames = []string{
"mSpanDead",
"mSpanInUse",
"mSpanManual",
}
// mSpanStateBox holds an atomic.Uint8 to provide atomic operations on
// an mSpanState. This is a separate type to disallow accidental comparison
// or assignment with mSpanState.
type mSpanStateBox struct {
s atomic.Uint8
}
// It is nosplit to match get, below.
//go:nosplit
func ( *mSpanStateBox) ( mSpanState) {
.s.Store(uint8())
}
// It is nosplit because it's called indirectly by typedmemclr,
// which must not be preempted.
//go:nosplit
func ( *mSpanStateBox) () mSpanState {
return mSpanState(.s.Load())
}
// mSpanList heads a linked list of spans.
type mSpanList struct {
_ sys.NotInHeap
first *mspan // first span in list, or nil if none
last *mspan // last span in list, or nil if none
}
type mspan struct {
_ sys.NotInHeap
next *mspan // next span in list, or nil if none
prev *mspan // previous span in list, or nil if none
list *mSpanList // For debugging.
startAddr uintptr // address of first byte of span aka s.base()
npages uintptr // number of pages in span
manualFreeList gclinkptr // list of free objects in mSpanManual spans
// freeindex is the slot index between 0 and nelems at which to begin scanning
// for the next free object in this span.
// Each allocation scans allocBits starting at freeindex until it encounters a 0
// indicating a free object. freeindex is then adjusted so that subsequent scans begin
// just past the newly discovered free object.
//
// If freeindex == nelem, this span has no free objects.
//
// allocBits is a bitmap of objects in this span.
// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
// then object n is free;
// otherwise, object n is allocated. Bits starting at nelem are
// undefined and should never be referenced.
//
// Object n starts at address n*elemsize + (start << pageShift).
freeindex uint16
// TODO: Look up nelems from sizeclass and remove this field if it
// helps performance.
nelems uint16 // number of object in the span.
// freeIndexForScan is like freeindex, except that freeindex is
// used by the allocator whereas freeIndexForScan is used by the
// GC scanner. They are two fields so that the GC sees the object
// is allocated only when the object and the heap bits are
// initialized (see also the assignment of freeIndexForScan in
// mallocgc, and issue 54596).
freeIndexForScan uint16
// Cache of the allocBits at freeindex. allocCache is shifted
// such that the lowest bit corresponds to the bit freeindex.
// allocCache holds the complement of allocBits, thus allowing
// ctz (count trailing zero) to use it directly.
// allocCache may contain bits beyond s.nelems; the caller must ignore
// these.
allocCache uint64
// allocBits and gcmarkBits hold pointers to a span's mark and
// allocation bits. The pointers are 8 byte aligned.
// There are three arenas where this data is held.
// free: Dirty arenas that are no longer accessed
// and can be reused.
// next: Holds information to be used in the next GC cycle.
// current: Information being used during this GC cycle.
// previous: Information being used during the last GC cycle.
// A new GC cycle starts with the call to finishsweep_m.
// finishsweep_m moves the previous arena to the free arena,
// the current arena to the previous arena, and
// the next arena to the current arena.
// The next arena is populated as the spans request
// memory to hold gcmarkBits for the next GC cycle as well
// as allocBits for newly allocated spans.
//
// The pointer arithmetic is done "by hand" instead of using
// arrays to avoid bounds checks along critical performance
// paths.
// The sweep will free the old allocBits and set allocBits to the
// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
// out memory.
allocBits *gcBits
gcmarkBits *gcBits
pinnerBits *gcBits // bitmap for pinned objects; accessed atomically
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping
// if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached
// h->sweepgen is incremented by 2 after every GC
sweepgen uint32
divMul uint32 // for divide by elemsize
allocCount uint16 // number of allocated objects
spanclass spanClass // size class and noscan (uint8)
state mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods)
needzero uint8 // needs to be zeroed before allocation
isUserArenaChunk bool // whether or not this span represents a user arena
allocCountBeforeCache uint16 // a copy of allocCount that is stored just before this span is cached
elemsize uintptr // computed from sizeclass or from npages
limit uintptr // end of data in span
speciallock mutex // guards specials list and changes to pinnerBits
specials *special // linked list of special records sorted by offset.
userArenaChunkFree addrRange // interval for managing chunk allocation
largeType *_type // malloc header for large objects.
}
func ( *mspan) () uintptr {
return .startAddr
}
func ( *mspan) () (, , uintptr) {
= .npages << _PageShift
= .elemsize
if > 0 {
= /
}
return
}
// recordspan adds a newly allocated span to h.allspans.
//
// This only happens the first time a span is allocated from
// mheap.spanalloc (it is not called when a span is reused).
//
// Write barriers are disallowed here because it can be called from
// gcWork when allocating new workbufs. However, because it's an
// indirect call from the fixalloc initializer, the compiler can't see
// this.
//
// The heap lock must be held.
//
//go:nowritebarrierrec
func recordspan( unsafe.Pointer, unsafe.Pointer) {
:= (*mheap)()
:= (*mspan)()
assertLockHeld(&.lock)
if len(.allspans) >= cap(.allspans) {
:= 64 * 1024 / goarch.PtrSize
if < cap(.allspans)*3/2 {
= cap(.allspans) * 3 / 2
}
var []*mspan
:= (*slice)(unsafe.Pointer(&))
.array = sysAlloc(uintptr()*goarch.PtrSize, &memstats.other_sys)
if .array == nil {
throw("runtime: cannot allocate memory")
}
.len = len(.allspans)
.cap =
if len(.allspans) > 0 {
copy(, .allspans)
}
:= .allspans
*(*notInHeapSlice)(unsafe.Pointer(&.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&))
if len() != 0 {
sysFree(unsafe.Pointer(&[0]), uintptr(cap())*unsafe.Sizeof([0]), &memstats.other_sys)
}
}
.allspans = .allspans[:len(.allspans)+1]
.allspans[len(.allspans)-1] =
}
// A spanClass represents the size class and noscan-ness of a span.
//
// Each size class has a noscan spanClass and a scan spanClass. The
// noscan spanClass contains only noscan objects, which do not contain
// pointers and thus do not need to be scanned by the garbage
// collector.
type spanClass uint8
const (
numSpanClasses = _NumSizeClasses << 1
tinySpanClass = spanClass(tinySizeClass<<1 | 1)
)
func makeSpanClass( uint8, bool) spanClass {
return spanClass(<<1) | spanClass(bool2int())
}
//go:nosplit
func ( spanClass) () int8 {
return int8( >> 1)
}
//go:nosplit
func ( spanClass) () bool {
return &1 != 0
}
// arenaIndex returns the index into mheap_.arenas of the arena
// containing metadata for p. This index combines of an index into the
// L1 map and an index into the L2 map and should be used as
// mheap_.arenas[ai.l1()][ai.l2()].
//
// If p is outside the range of valid heap addresses, either l1() or
// l2() will be out of bounds.
//
// It is nosplit because it's called by spanOf and several other
// nosplit functions.
//
//go:nosplit
func arenaIndex( uintptr) arenaIdx {
return arenaIdx(( - arenaBaseOffset) / heapArenaBytes)
}
// arenaBase returns the low address of the region covered by heap
// arena i.
func arenaBase( arenaIdx) uintptr {
return uintptr()*heapArenaBytes + arenaBaseOffset
}
type arenaIdx uint
// l1 returns the "l1" portion of an arenaIdx.
//
// Marked nosplit because it's called by spanOf and other nosplit
// functions.
//
//go:nosplit
func ( arenaIdx) () uint {
if arenaL1Bits == 0 {
// Let the compiler optimize this away if there's no
// L1 map.
return 0
} else {
return uint() >> arenaL1Shift
}
}
// l2 returns the "l2" portion of an arenaIdx.
//
// Marked nosplit because it's called by spanOf and other nosplit funcs.
// functions.
//
//go:nosplit
func ( arenaIdx) () uint {
if arenaL1Bits == 0 {
return uint()
} else {
return uint() & (1<<arenaL2Bits - 1)
}
}
// inheap reports whether b is a pointer into a (potentially dead) heap object.
// It returns false for pointers into mSpanManual spans.
// Non-preemptible because it is used by write barriers.
//
//go:nowritebarrier
//go:nosplit
func inheap( uintptr) bool {
return spanOfHeap() != nil
}
// inHeapOrStack is a variant of inheap that returns true for pointers
// into any allocated heap span.
//
//go:nowritebarrier
//go:nosplit
func inHeapOrStack( uintptr) bool {
:= spanOf()
if == nil || < .base() {
return false
}
switch .state.get() {
case mSpanInUse, mSpanManual:
return < .limit
default:
return false
}
}
// spanOf returns the span of p. If p does not point into the heap
// arena or no span has ever contained p, spanOf returns nil.
//
// If p does not point to allocated memory, this may return a non-nil
// span that does *not* contain p. If this is a possibility, the
// caller should either call spanOfHeap or check the span bounds
// explicitly.
//
// Must be nosplit because it has callers that are nosplit.
//
//go:nosplit
func spanOf( uintptr) *mspan {
// This function looks big, but we use a lot of constant
// folding around arenaL1Bits to get it under the inlining
// budget. Also, many of the checks here are safety checks
// that Go needs to do anyway, so the generated code is quite
// short.
:= arenaIndex()
if arenaL1Bits == 0 {
// If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can.
if .l2() >= uint(len(mheap_.arenas[0])) {
return nil
}
} else {
// If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't.
if .l1() >= uint(len(mheap_.arenas)) {
return nil
}
}
:= mheap_.arenas[.l1()]
if arenaL1Bits != 0 && == nil { // Should never happen if there's no L1.
return nil
}
:= [.l2()]
if == nil {
return nil
}
return .spans[(/pageSize)%pagesPerArena]
}
// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
// that p points into an allocated heap arena.
//
// Must be nosplit because it has callers that are nosplit.
//
//go:nosplit
func spanOfUnchecked( uintptr) *mspan {
:= arenaIndex()
return mheap_.arenas[.l1()][.l2()].spans[(/pageSize)%pagesPerArena]
}
// spanOfHeap is like spanOf, but returns nil if p does not point to a
// heap object.
//
// Must be nosplit because it has callers that are nosplit.
//
//go:nosplit
func spanOfHeap( uintptr) *mspan {
:= spanOf()
// s is nil if it's never been allocated. Otherwise, we check
// its state first because we don't trust this pointer, so we
// have to synchronize with span initialization. Then, it's
// still possible we picked up a stale span pointer, so we
// have to check the span's bounds.
if == nil || .state.get() != mSpanInUse || < .base() || >= .limit {
return nil
}
return
}
// pageIndexOf returns the arena, page index, and page mask for pointer p.
// The caller must ensure p is in the heap.
func pageIndexOf( uintptr) ( *heapArena, uintptr, uint8) {
:= arenaIndex()
= mheap_.arenas[.l1()][.l2()]
= (( / pageSize) / 8) % uintptr(len(.pageInUse))
= byte(1 << (( / pageSize) % 8))
return
}
// Initialize the heap.
func ( *mheap) () {
lockInit(&.lock, lockRankMheap)
lockInit(&.speciallock, lockRankMheapSpecial)
.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(), &memstats.mspan_sys)
.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
.specialCleanupAlloc.init(unsafe.Sizeof(specialCleanup{}), nil, nil, &memstats.other_sys)
.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys)
.specialPinCounterAlloc.init(unsafe.Sizeof(specialPinCounter{}), nil, nil, &memstats.other_sys)
.specialWeakHandleAlloc.init(unsafe.Sizeof(specialWeakHandle{}), nil, nil, &memstats.gcMiscSys)
.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys)
// Don't zero mspan allocations. Background sweeping can
// inspect a span concurrently with allocating it, so it's
// important that the span's sweepgen survive across freeing
// and re-allocating a span to prevent background sweeping
// from improperly cas'ing it from 0.
//
// This is safe because mspan contains no heap pointers.
.spanalloc.zero = false
// h->mapcache needs no init
for := range .central {
.central[].mcentral.init(spanClass())
}
.pages.init(&.lock, &memstats.gcMiscSys, false)
}
// reclaim sweeps and reclaims at least npage pages into the heap.
// It is called before allocating npage pages to keep growth in check.
//
// reclaim implements the page-reclaimer half of the sweeper.
//
// h.lock must NOT be held.
func ( *mheap) ( uintptr) {
// TODO(austin): Half of the time spent freeing spans is in
// locking/unlocking the heap (even with low contention). We
// could make the slow path here several times faster by
// batching heap frees.
// Bail early if there's no more reclaim work.
if .reclaimIndex.Load() >= 1<<63 {
return
}
// Disable preemption so the GC can't start while we're
// sweeping, so we can read h.sweepArenas, and so
// traceGCSweepStart/Done pair on the P.
:= acquirem()
:= traceAcquire()
if .ok() {
.GCSweepStart()
traceRelease()
}
:= .sweepArenas
:= false
for > 0 {
// Pull from accumulated credit first.
if := .reclaimCredit.Load(); > 0 {
:=
if > {
// Take only what we need.
=
}
if .reclaimCredit.CompareAndSwap(, -) {
-=
}
continue
}
// Claim a chunk of work.
:= uintptr(.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk)
if /pagesPerArena >= uintptr(len()) {
// Page reclaiming is done.
.reclaimIndex.Store(1 << 63)
break
}
if ! {
// Lock the heap for reclaimChunk.
lock(&.lock)
= true
}
// Scan this chunk.
:= .reclaimChunk(, , pagesPerReclaimerChunk)
if <= {
-=
} else {
// Put spare pages toward global credit.
.reclaimCredit.Add( - )
= 0
}
}
if {
unlock(&.lock)
}
= traceAcquire()
if .ok() {
.GCSweepDone()
traceRelease()
}
releasem()
}
// reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n).
// It returns the number of pages returned to the heap.
//
// h.lock must be held and the caller must be non-preemptible. Note: h.lock may be
// temporarily unlocked and re-locked in order to do sweeping or if tracing is
// enabled.
func ( *mheap) ( []arenaIdx, , uintptr) uintptr {
// The heap lock must be held because this accesses the
// heapArena.spans arrays using potentially non-live pointers.
// In particular, if a span were freed and merged concurrently
// with this probing heapArena.spans, it would be possible to
// observe arbitrary, stale span pointers.
assertLockHeld(&.lock)
:=
var uintptr
:= sweep.active.begin()
if !.valid {
return 0
}
for > 0 {
:= [/pagesPerArena]
:= .arenas[.l1()][.l2()]
// Get a chunk of the bitmap to work on.
:= uint( % pagesPerArena)
:= .pageInUse[/8:]
:= .pageMarks[/8:]
if uintptr(len()) > /8 {
= [:/8]
= [:/8]
}
// Scan this bitmap chunk for spans that are in-use
// but have no marked objects on them.
for := range {
:= atomic.Load8(&[]) &^ []
if == 0 {
continue
}
for := uint(0); < 8; ++ {
if &(1<<) != 0 {
:= .spans[+uint()*8+]
if , := .tryAcquire(); {
:= .npages
unlock(&.lock)
if .sweep(false) {
+=
}
lock(&.lock)
// Reload inUse. It's possible nearby
// spans were freed when we dropped the
// lock and we don't want to get stale
// pointers from the spans array.
= atomic.Load8(&[]) &^ []
}
}
}
}
// Advance.
+= uintptr(len() * 8)
-= uintptr(len() * 8)
}
sweep.active.end()
:= traceAcquire()
if .ok() {
unlock(&.lock)
// Account for pages scanned but not reclaimed.
.GCSweepSpan(( - ) * pageSize)
traceRelease()
lock(&.lock)
}
assertLockHeld(&.lock) // Must be locked on return.
return
}
// spanAllocType represents the type of allocation to make, or
// the type of allocation to be freed.
type spanAllocType uint8
const (
spanAllocHeap spanAllocType = iota // heap span
spanAllocStack // stack span
spanAllocPtrScalarBits // unrolled GC prog bitmap span
spanAllocWorkBuf // work buf span
)
// manual returns true if the span allocation is manually managed.
func ( spanAllocType) () bool {
return != spanAllocHeap
}
// alloc allocates a new span of npage pages from the GC'd heap.
//
// spanclass indicates the span's size class and scannability.
//
// Returns a span that has been fully initialized. span.needzero indicates
// whether the span has been zeroed. Note that it may not be.
func ( *mheap) ( uintptr, spanClass) *mspan {
// Don't do any operations that lock the heap on the G stack.
// It might trigger stack growth, and the stack growth code needs
// to be able to allocate heap.
var *mspan
systemstack(func() {
// To prevent excessive heap growth, before allocating n pages
// we need to sweep and reclaim at least n pages.
if !isSweepDone() {
.reclaim()
}
= .allocSpan(, spanAllocHeap, )
})
return
}
// allocManual allocates a manually-managed span of npage pages.
// allocManual returns nil if allocation fails.
//
// allocManual adds the bytes used to *stat, which should be a
// memstats in-use field. Unlike allocations in the GC'd heap, the
// allocation does *not* count toward heapInUse.
//
// The memory backing the returned span may not be zeroed if
// span.needzero is set.
//
// allocManual must be called on the system stack because it may
// acquire the heap lock via allocSpan. See mheap for details.
//
// If new code is written to call allocManual, do NOT use an
// existing spanAllocType value and instead declare a new one.
//
//go:systemstack
func ( *mheap) ( uintptr, spanAllocType) *mspan {
if !.manual() {
throw("manual span allocation called with non-manually-managed type")
}
return .allocSpan(, , 0)
}
// setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize))
// is s.
func ( *mheap) (, uintptr, *mspan) {
:= / pageSize
:= arenaIndex()
:= .arenas[.l1()][.l2()]
for := uintptr(0); < ; ++ {
:= ( + ) % pagesPerArena
if == 0 {
= arenaIndex( + *pageSize)
= .arenas[.l1()][.l2()]
}
.spans[] =
}
}
// allocNeedsZero checks if the region of address space [base, base+npage*pageSize),
// assumed to be allocated, needs to be zeroed, updating heap arena metadata for
// future allocations.
//
// This must be called each time pages are allocated from the heap, even if the page
// allocator can otherwise prove the memory it's allocating is already zero because
// they're fresh from the operating system. It updates heapArena metadata that is
// critical for future page allocations.
//
// There are no locking constraints on this method.
func ( *mheap) (, uintptr) ( bool) {
for > 0 {
:= arenaIndex()
:= .arenas[.l1()][.l2()]
:= atomic.Loaduintptr(&.zeroedBase)
:= % heapArenaBytes
if < {
// We extended into the non-zeroed part of the
// arena, so this region needs to be zeroed before use.
//
// zeroedBase is monotonically increasing, so if we see this now then
// we can be sure we need to zero this memory region.
//
// We still need to update zeroedBase for this arena, and
// potentially more arenas.
= true
}
// We may observe arenaBase > zeroedBase if we're racing with one or more
// allocations which are acquiring memory directly before us in the address
// space. But, because we know no one else is acquiring *this* memory, it's
// still safe to not zero.
// Compute how far into the arena we extend into, capped
// at heapArenaBytes.
:= + *pageSize
if > heapArenaBytes {
= heapArenaBytes
}
// Increase ha.zeroedBase so it's >= arenaLimit.
// We may be racing with other updates.
for > {
if atomic.Casuintptr(&.zeroedBase, , ) {
break
}
= atomic.Loaduintptr(&.zeroedBase)
// Double check basic conditions of zeroedBase.
if <= && > {
// The zeroedBase moved into the space we were trying to
// claim. That's very bad, and indicates someone allocated
// the same region we did.
throw("potentially overlapping in-use allocations detected")
}
}
// Move base forward and subtract from npage to move into
// the next arena, or finish.
+= -
-= ( - ) / pageSize
}
return
}
// tryAllocMSpan attempts to allocate an mspan object from
// the P-local cache, but may fail.
//
// h.lock need not be held.
//
// This caller must ensure that its P won't change underneath
// it during this function. Currently to ensure that we enforce
// that the function is run on the system stack, because that's
// the only place it is used now. In the future, this requirement
// may be relaxed if its use is necessary elsewhere.
//
//go:systemstack
func ( *mheap) () *mspan {
:= getg().m.p.ptr()
// If we don't have a p or the cache is empty, we can't do
// anything here.
if == nil || .mspancache.len == 0 {
return nil
}
// Pull off the last entry in the cache.
:= .mspancache.buf[.mspancache.len-1]
.mspancache.len--
return
}
// allocMSpanLocked allocates an mspan object.
//
// h.lock must be held.
//
// allocMSpanLocked must be called on the system stack because
// its caller holds the heap lock. See mheap for details.
// Running on the system stack also ensures that we won't
// switch Ps during this function. See tryAllocMSpan for details.
//
//go:systemstack
func ( *mheap) () *mspan {
assertLockHeld(&.lock)
:= getg().m.p.ptr()
if == nil {
// We don't have a p so just do the normal thing.
return (*mspan)(.spanalloc.alloc())
}
// Refill the cache if necessary.
if .mspancache.len == 0 {
const = len(.mspancache.buf) / 2
for := 0; < ; ++ {
.mspancache.buf[] = (*mspan)(.spanalloc.alloc())
}
.mspancache.len =
}
// Pull off the last entry in the cache.
:= .mspancache.buf[.mspancache.len-1]
.mspancache.len--
return
}
// freeMSpanLocked free an mspan object.
//
// h.lock must be held.
//
// freeMSpanLocked must be called on the system stack because
// its caller holds the heap lock. See mheap for details.
// Running on the system stack also ensures that we won't
// switch Ps during this function. See tryAllocMSpan for details.
//
//go:systemstack
func ( *mheap) ( *mspan) {
assertLockHeld(&.lock)
:= getg().m.p.ptr()
// First try to free the mspan directly to the cache.
if != nil && .mspancache.len < len(.mspancache.buf) {
.mspancache.buf[.mspancache.len] =
.mspancache.len++
return
}
// Failing that (or if we don't have a p), just free it to
// the heap.
.spanalloc.free(unsafe.Pointer())
}
// allocSpan allocates an mspan which owns npages worth of memory.
//
// If typ.manual() == false, allocSpan allocates a heap span of class spanclass
// and updates heap accounting. If manual == true, allocSpan allocates a
// manually-managed span (spanclass is ignored), and the caller is
// responsible for any accounting related to its use of the span. Either
// way, allocSpan will atomically add the bytes in the newly allocated
// span to *sysStat.
//
// The returned span is fully initialized.
//
// h.lock must not be held.
//
// allocSpan must be called on the system stack both because it acquires
// the heap lock and because it must block GC transitions.
//
//go:systemstack
func ( *mheap) ( uintptr, spanAllocType, spanClass) ( *mspan) {
// Function-global state.
:= getg()
, := uintptr(0), uintptr(0)
:= uintptr(0)
// On some platforms we need to provide physical page aligned stack
// allocations. Where the page size is less than the physical page
// size, we already manage to do this by default.
:= physPageAlignedStacks && == spanAllocStack && pageSize < physPageSize
// If the allocation is small enough, try the page cache!
// The page cache does not support aligned allocations, so we cannot use
// it if we need to provide a physical page aligned stack allocation.
:= .m.p.ptr()
if ! && != nil && < pageCachePages/4 {
:= &.pcache
// If the cache is empty, refill it.
if .empty() {
lock(&.lock)
* = .pages.allocToCache()
unlock(&.lock)
}
// Try to allocate from the cache.
, = .alloc()
if != 0 {
= .tryAllocMSpan()
if != nil {
goto
}
// We have a base but no mspan, so we need
// to lock the heap.
}
}
// For one reason or another, we couldn't get the
// whole job done without the heap lock.
lock(&.lock)
if {
// Overallocate by a physical page to allow for later alignment.
:= physPageSize / pageSize
// Find a big enough region first, but then only allocate the
// aligned portion. We can't just allocate and then free the
// edges because we need to account for scavenged memory, and
// that's difficult with alloc.
//
// Note that we skip updates to searchAddr here. It's OK if
// it's stale and higher than normal; it'll operate correctly,
// just come with a performance cost.
, _ = .pages.find( + )
if == 0 {
var bool
, = .grow( + )
if ! {
unlock(&.lock)
return nil
}
, _ = .pages.find( + )
if == 0 {
throw("grew heap, but no adequate free space found")
}
}
= alignUp(, physPageSize)
= .pages.allocRange(, )
}
if == 0 {
// Try to acquire a base address.
, = .pages.alloc()
if == 0 {
var bool
, = .grow()
if ! {
unlock(&.lock)
return nil
}
, = .pages.alloc()
if == 0 {
throw("grew heap, but no adequate free space found")
}
}
}
if == nil {
// We failed to get an mspan earlier, so grab
// one now that we have the heap lock.
= .allocMSpanLocked()
}
unlock(&.lock)
:
// Decide if we need to scavenge in response to what we just allocated.
// Specifically, we track the maximum amount of memory to scavenge of all
// the alternatives below, assuming that the maximum satisfies *all*
// conditions we check (e.g. if we need to scavenge X to satisfy the
// memory limit and Y to satisfy heap-growth scavenging, and Y > X, then
// it's fine to pick Y, because the memory limit is still satisfied).
//
// It's fine to do this after allocating because we expect any scavenged
// pages not to get touched until we return. Simultaneously, it's important
// to do this before calling sysUsed because that may commit address space.
:= uintptr(0)
:= false
if := gcController.memoryLimit.Load(); !gcCPULimiter.limiting() {
// Assist with scavenging to maintain the memory limit by the amount
// that we expect to page in.
:= gcController.mappedReady.Load()
// Be careful about overflow, especially with uintptrs. Even on 32-bit platforms
// someone can set a really big memory limit that isn't maxInt64.
if uint64()+ > uint64() {
= uintptr(uint64() + - uint64())
= true
}
}
if := scavenge.gcPercentGoal.Load(); != ^uint64(0) && > 0 {
// We just caused a heap growth, so scavenge down what will soon be used.
// By scavenging inline we deal with the failure to allocate out of
// memory fragments by scavenging the memory fragments that are least
// likely to be re-used.
//
// Only bother with this because we're not using a memory limit. We don't
// care about heap growths as long as we're under the memory limit, and the
// previous check for scaving already handles that.
if := heapRetained(); +uint64() > {
// The scavenging algorithm requires the heap lock to be dropped so it
// can acquire it only sparingly. This is a potentially expensive operation
// so it frees up other goroutines to allocate in the meanwhile. In fact,
// they can make use of the growth we just created.
:=
if := uintptr( + uint64() - ); > {
=
}
if > {
=
}
}
}
// There are a few very limited circumstances where we won't have a P here.
// It's OK to simply skip scavenging in these cases. Something else will notice
// and pick up the tab.
var int64
if != nil && > 0 {
// Measure how long we spent scavenging and add that measurement to the assist
// time so we can track it for the GC CPU limiter.
//
// Limiter event tracking might be disabled if we end up here
// while on a mark worker.
:= nanotime()
:= .limiterEvent.start(limiterEventScavengeAssist, )
// Scavenge, but back out if the limiter turns on.
:= .pages.scavenge(, func() bool {
return gcCPULimiter.limiting()
}, )
mheap_.pages.scav.releasedEager.Add()
// Finish up accounting.
= nanotime()
if {
.limiterEvent.stop(limiterEventScavengeAssist, )
}
scavenge.assistTime.Add( - )
}
// Initialize the span.
.initSpan(, , , , )
// Commit and account for any scavenged memory that the span now owns.
:= * pageSize
if != 0 {
// sysUsed all the pages that are actually available
// in the span since some of them might be scavenged.
sysUsed(unsafe.Pointer(), , )
gcController.heapReleased.add(-int64())
}
// Update stats.
gcController.heapFree.add(-int64( - ))
if == spanAllocHeap {
gcController.heapInUse.add(int64())
}
// Update consistent stats.
:= memstats.heapStats.acquire()
atomic.Xaddint64(&.committed, int64())
atomic.Xaddint64(&.released, -int64())
switch {
case spanAllocHeap:
atomic.Xaddint64(&.inHeap, int64())
case spanAllocStack:
atomic.Xaddint64(&.inStacks, int64())
case spanAllocPtrScalarBits:
atomic.Xaddint64(&.inPtrScalarBits, int64())
case spanAllocWorkBuf:
atomic.Xaddint64(&.inWorkBufs, int64())
}
memstats.heapStats.release()
// Trace the span alloc.
if traceAllocFreeEnabled() {
:= traceAcquire()
if .ok() {
.SpanAlloc()
traceRelease()
}
}
return
}
// initSpan initializes a blank span s which will represent the range
// [base, base+npages*pageSize). typ is the type of span being allocated.
func ( *mheap) ( *mspan, spanAllocType, spanClass, , uintptr) {
// At this point, both s != nil and base != 0, and the heap
// lock is no longer held. Initialize the span.
.init(, )
if .allocNeedsZero(, ) {
.needzero = 1
}
:= * pageSize
if .manual() {
.manualFreeList = 0
.nelems = 0
.limit = .base() + .npages*pageSize
.state.set(mSpanManual)
} else {
// We must set span properties before the span is published anywhere
// since we're not holding the heap lock.
.spanclass =
if := .sizeclass(); == 0 {
.elemsize =
.nelems = 1
.divMul = 0
} else {
.elemsize = uintptr(class_to_size[])
if !.spanclass.noscan() && heapBitsInSpan(.elemsize) {
// Reserve space for the pointer/scan bitmap at the end.
.nelems = uint16(( - ( / goarch.PtrSize / 8)) / .elemsize)
} else {
.nelems = uint16( / .elemsize)
}
.divMul = class_to_divmagic[]
}
// Initialize mark and allocation structures.
.freeindex = 0
.freeIndexForScan = 0
.allocCache = ^uint64(0) // all 1s indicating all free.
.gcmarkBits = newMarkBits(uintptr(.nelems))
.allocBits = newAllocBits(uintptr(.nelems))
// It's safe to access h.sweepgen without the heap lock because it's
// only ever updated with the world stopped and we run on the
// systemstack which blocks a STW transition.
atomic.Store(&.sweepgen, .sweepgen)
// Now that the span is filled in, set its state. This
// is a publication barrier for the other fields in
// the span. While valid pointers into this span
// should never be visible until the span is returned,
// if the garbage collector finds an invalid pointer,
// access to the span may race with initialization of
// the span. We resolve this race by atomically
// setting the state after the span is fully
// initialized, and atomically checking the state in
// any situation where a pointer is suspect.
.state.set(mSpanInUse)
}
// Publish the span in various locations.
// This is safe to call without the lock held because the slots
// related to this span will only ever be read or modified by
// this thread until pointers into the span are published (and
// we execute a publication barrier at the end of this function
// before that happens) or pageInUse is updated.
.setSpans(.base(), , )
if !.manual() {
// Mark in-use span in arena page bitmap.
//
// This publishes the span to the page sweeper, so
// it's imperative that the span be completely initialized
// prior to this line.
, , := pageIndexOf(.base())
atomic.Or8(&.pageInUse[], )
// Update related page sweeper stats.
.pagesInUse.Add()
}
// Make sure the newly allocated span will be observed
// by the GC before pointers into the span are published.
publicationBarrier()
}
// Try to add at least npage pages of memory to the heap,
// returning how much the heap grew by and whether it worked.
//
// h.lock must be held.
func ( *mheap) ( uintptr) (uintptr, bool) {
assertLockHeld(&.lock)
// We must grow the heap in whole palloc chunks.
// We call sysMap below but note that because we
// round up to pallocChunkPages which is on the order
// of MiB (generally >= to the huge page size) we
// won't be calling it too much.
:= alignUp(, pallocChunkPages) * pageSize
:= uintptr(0)
// This may overflow because ask could be very large
// and is otherwise unrelated to h.curArena.base.
:= .curArena.base +
:= alignUp(, physPageSize)
if > .curArena.end || /* overflow */ < .curArena.base {
// Not enough room in the current arena. Allocate more
// arena space. This may not be contiguous with the
// current arena, so we have to request the full ask.
, := .sysAlloc(, &.arenaHints, true)
if == nil {
:= gcController.heapFree.load() + gcController.heapReleased.load() + gcController.heapInUse.load()
print("runtime: out of memory: cannot allocate ", , "-byte block (", , " in use)\n")
return 0, false
}
if uintptr() == .curArena.end {
// The new space is contiguous with the old
// space, so just extend the current space.
.curArena.end = uintptr() +
} else {
// The new space is discontiguous. Track what
// remains of the current space and switch to
// the new space. This should be rare.
if := .curArena.end - .curArena.base; != 0 {
// Transition this space from Reserved to Prepared and mark it
// as released since we'll be able to start using it after updating
// the page allocator and releasing the lock at any time.
sysMap(unsafe.Pointer(.curArena.base), , &gcController.heapReleased)
// Update stats.
:= memstats.heapStats.acquire()
atomic.Xaddint64(&.released, int64())
memstats.heapStats.release()
// Update the page allocator's structures to make this
// space ready for allocation.
.pages.grow(.curArena.base, )
+=
}
// Switch to the new space.
.curArena.base = uintptr()
.curArena.end = uintptr() +
}
// Recalculate nBase.
// We know this won't overflow, because sysAlloc returned
// a valid region starting at h.curArena.base which is at
// least ask bytes in size.
= alignUp(.curArena.base+, physPageSize)
}
// Grow into the current arena.
:= .curArena.base
.curArena.base =
// Transition the space we're going to use from Reserved to Prepared.
//
// The allocation is always aligned to the heap arena
// size which is always > physPageSize, so its safe to
// just add directly to heapReleased.
sysMap(unsafe.Pointer(), -, &gcController.heapReleased)
// The memory just allocated counts as both released
// and idle, even though it's not yet backed by spans.
:= memstats.heapStats.acquire()
atomic.Xaddint64(&.released, int64(-))
memstats.heapStats.release()
// Update the page allocator's structures to make this
// space ready for allocation.
.pages.grow(, -)
+= -
return , true
}
// Free the span back into the heap.
func ( *mheap) ( *mspan) {
systemstack(func() {
// Trace the span free.
if traceAllocFreeEnabled() {
:= traceAcquire()
if .ok() {
.SpanFree()
traceRelease()
}
}
lock(&.lock)
if msanenabled {
// Tell msan that this entire span is no longer in use.
:= unsafe.Pointer(.base())
:= .npages << _PageShift
msanfree(, )
}
if asanenabled {
// Tell asan that this entire span is no longer in use.
:= unsafe.Pointer(.base())
:= .npages << _PageShift
asanpoison(, )
}
.freeSpanLocked(, spanAllocHeap)
unlock(&.lock)
})
}
// freeManual frees a manually-managed span returned by allocManual.
// typ must be the same as the spanAllocType passed to the allocManual that
// allocated s.
//
// This must only be called when gcphase == _GCoff. See mSpanState for
// an explanation.
//
// freeManual must be called on the system stack because it acquires
// the heap lock. See mheap for details.
//
//go:systemstack
func ( *mheap) ( *mspan, spanAllocType) {
// Trace the span free.
if traceAllocFreeEnabled() {
:= traceAcquire()
if .ok() {
.SpanFree()
traceRelease()
}
}
.needzero = 1
lock(&.lock)
.freeSpanLocked(, )
unlock(&.lock)
}
func ( *mheap) ( *mspan, spanAllocType) {
assertLockHeld(&.lock)
switch .state.get() {
case mSpanManual:
if .allocCount != 0 {
throw("mheap.freeSpanLocked - invalid stack free")
}
case mSpanInUse:
if .isUserArenaChunk {
throw("mheap.freeSpanLocked - invalid free of user arena chunk")
}
if .allocCount != 0 || .sweepgen != .sweepgen {
print("mheap.freeSpanLocked - span ", , " ptr ", hex(.base()), " allocCount ", .allocCount, " sweepgen ", .sweepgen, "/", .sweepgen, "\n")
throw("mheap.freeSpanLocked - invalid free")
}
.pagesInUse.Add(-.npages)
// Clear in-use bit in arena page bitmap.
, , := pageIndexOf(.base())
atomic.And8(&.pageInUse[], ^)
default:
throw("mheap.freeSpanLocked - invalid span state")
}
// Update stats.
//
// Mirrors the code in allocSpan.
:= .npages * pageSize
gcController.heapFree.add(int64())
if == spanAllocHeap {
gcController.heapInUse.add(-int64())
}
// Update consistent stats.
:= memstats.heapStats.acquire()
switch {
case spanAllocHeap:
atomic.Xaddint64(&.inHeap, -int64())
case spanAllocStack:
atomic.Xaddint64(&.inStacks, -int64())
case spanAllocPtrScalarBits:
atomic.Xaddint64(&.inPtrScalarBits, -int64())
case spanAllocWorkBuf:
atomic.Xaddint64(&.inWorkBufs, -int64())
}
memstats.heapStats.release()
// Mark the space as free.
.pages.free(.base(), .npages)
// Free the span structure. We no longer have a use for it.
.state.set(mSpanDead)
.freeMSpanLocked()
}
// scavengeAll acquires the heap lock (blocking any additional
// manipulation of the page allocator) and iterates over the whole
// heap, scavenging every free page available.
//
// Must run on the system stack because it acquires the heap lock.
//
//go:systemstack
func ( *mheap) () {
// Disallow malloc or panic while holding the heap lock. We do
// this here because this is a non-mallocgc entry-point to
// the mheap API.
:= getg()
.m.mallocing++
// Force scavenge everything.
:= .pages.scavenge(^uintptr(0), nil, true)
.m.mallocing--
if debug.scavtrace > 0 {
printScavTrace(0, , true)
}
}
//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
func runtime_debug_freeOSMemory() {
GC()
systemstack(func() { mheap_.scavengeAll() })
}
// Initialize a new span with the given start and npages.
func ( *mspan) ( uintptr, uintptr) {
// span is *not* zeroed.
.next = nil
.prev = nil
.list = nil
.startAddr =
.npages =
.allocCount = 0
.spanclass = 0
.elemsize = 0
.speciallock.key = 0
.specials = nil
.needzero = 0
.freeindex = 0
.freeIndexForScan = 0
.allocBits = nil
.gcmarkBits = nil
.pinnerBits = nil
.state.set(mSpanDead)
lockInit(&.speciallock, lockRankMspanSpecial)
}
func ( *mspan) () bool {
return .list != nil
}
// Initialize an empty doubly-linked list.
func ( *mSpanList) () {
.first = nil
.last = nil
}
func ( *mSpanList) ( *mspan) {
if .list != {
print("runtime: failed mSpanList.remove span.npages=", .npages,
" span=", , " prev=", .prev, " span.list=", .list, " list=", , "\n")
throw("mSpanList.remove")
}
if .first == {
.first = .next
} else {
.prev.next = .next
}
if .last == {
.last = .prev
} else {
.next.prev = .prev
}
.next = nil
.prev = nil
.list = nil
}
func ( *mSpanList) () bool {
return .first == nil
}
func ( *mSpanList) ( *mspan) {
if .next != nil || .prev != nil || .list != nil {
println("runtime: failed mSpanList.insert", , .next, .prev, .list)
throw("mSpanList.insert")
}
.next = .first
if .first != nil {
// The list contains at least one span; link it in.
// The last span in the list doesn't change.
.first.prev =
} else {
// The list contains no spans, so this is also the last span.
.last =
}
.first =
.list =
}
func ( *mSpanList) ( *mspan) {
if .next != nil || .prev != nil || .list != nil {
println("runtime: failed mSpanList.insertBack", , .next, .prev, .list)
throw("mSpanList.insertBack")
}
.prev = .last
if .last != nil {
// The list contains at least one span.
.last.next =
} else {
// The list contains no spans, so this is also the first span.
.first =
}
.last =
.list =
}
// takeAll removes all spans from other and inserts them at the front
// of list.
func ( *mSpanList) ( *mSpanList) {
if .isEmpty() {
return
}
// Reparent everything in other to list.
for := .first; != nil; = .next {
.list =
}
// Concatenate the lists.
if .isEmpty() {
* = *
} else {
// Neither list is empty. Put other before list.
.last.next = .first
.first.prev = .last
.first = .first
}
.first, .last = nil, nil
}
const (
// _KindSpecialFinalizer is for tracking finalizers.
_KindSpecialFinalizer = 1
// _KindSpecialWeakHandle is used for creating weak pointers.
_KindSpecialWeakHandle = 2
// _KindSpecialProfile is for memory profiling.
_KindSpecialProfile = 3
// _KindSpecialReachable is a special used for tracking
// reachability during testing.
_KindSpecialReachable = 4
// _KindSpecialPinCounter is a special used for objects that are pinned
// multiple times
_KindSpecialPinCounter = 5
// _KindSpecialCleanup is for tracking cleanups.
_KindSpecialCleanup = 6
)
type special struct {
_ sys.NotInHeap
next *special // linked list in span
offset uintptr // span offset of object
kind byte // kind of special
}
// spanHasSpecials marks a span as having specials in the arena bitmap.
func spanHasSpecials( *mspan) {
:= (.base() / pageSize) % pagesPerArena
:= arenaIndex(.base())
:= mheap_.arenas[.l1()][.l2()]
atomic.Or8(&.pageSpecials[/8], uint8(1)<<(%8))
}
// spanHasNoSpecials marks a span as having no specials in the arena bitmap.
func spanHasNoSpecials( *mspan) {
:= (.base() / pageSize) % pagesPerArena
:= arenaIndex(.base())
:= mheap_.arenas[.l1()][.l2()]
atomic.And8(&.pageSpecials[/8], ^(uint8(1) << ( % 8)))
}
// addspecial adds the special record s to the list of special records for
// the object p. All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
// already exists unless force is set to true.)
func addspecial( unsafe.Pointer, *special, bool) bool {
:= spanOfHeap(uintptr())
if == nil {
throw("addspecial on invalid pointer")
}
// Ensure that the span is swept.
// Sweeping accesses the specials list w/o locks, so we have
// to synchronize with it. And it's just much safer.
:= acquirem()
.ensureSwept()
:= uintptr() - .base()
:= .kind
lock(&.speciallock)
// Find splice point, check for existing record.
, := .specialFindSplicePoint(, )
if ! || {
// Splice in record, fill in offset.
.offset =
.next = *
* =
spanHasSpecials()
}
unlock(&.speciallock)
releasem()
// We're converting p to a uintptr and looking it up, and we
// don't want it to die and get swept while we're doing so.
KeepAlive()
return ! || // already exists or addition was forced
}
// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
func removespecial( unsafe.Pointer, uint8) *special {
:= spanOfHeap(uintptr())
if == nil {
throw("removespecial on invalid pointer")
}
// Ensure that the span is swept.
// Sweeping accesses the specials list w/o locks, so we have
// to synchronize with it. And it's just much safer.
:= acquirem()
.ensureSwept()
:= uintptr() - .base()
var *special
lock(&.speciallock)
, := .specialFindSplicePoint(, )
if {
:= *
* = .next
=
}
if .specials == nil {
spanHasNoSpecials()
}
unlock(&.speciallock)
releasem()
return
}
// Find a splice point in the sorted list and check for an already existing
// record. Returns a pointer to the next-reference in the list predecessor.
// Returns true, if the referenced item is an exact match.
func ( *mspan) ( uintptr, byte) (**special, bool) {
// Find splice point, check for existing record.
:= &.specials
:= false
for {
:= *
if == nil {
break
}
if == uintptr(.offset) && == .kind {
= true
break
}
if < uintptr(.offset) || ( == uintptr(.offset) && < .kind) {
break
}
= &.next
}
return ,
}
// The described object has a finalizer set for it.
//
// specialfinalizer is allocated from non-GC'd memory, so any heap
// pointers must be specially handled.
type specialfinalizer struct {
_ sys.NotInHeap
special special
fn *funcval // May be a heap pointer.
nret uintptr
fint *_type // May be a heap pointer, but always live.
ot *ptrtype // May be a heap pointer, but always live.
}
// Adds a finalizer to the object p. Returns true if it succeeded.
func addfinalizer( unsafe.Pointer, *funcval, uintptr, *_type, *ptrtype) bool {
lock(&mheap_.speciallock)
:= (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
unlock(&mheap_.speciallock)
.special.kind = _KindSpecialFinalizer
.fn =
.nret =
.fint =
.ot =
if addspecial(, &.special, false) {
// This is responsible for maintaining the same
// GC-related invariants as markrootSpans in any
// situation where it's possible that markrootSpans
// has already run but mark termination hasn't yet.
if gcphase != _GCoff {
, , := findObject(uintptr(), 0, 0)
:= acquirem()
:= &.p.ptr().gcw
// Mark everything reachable from the object
// so it's retained for the finalizer.
if !.spanclass.noscan() {
scanobject(, )
}
// Mark the finalizer itself, since the
// special isn't part of the GC'd heap.
scanblock(uintptr(unsafe.Pointer(&.fn)), goarch.PtrSize, &oneptrmask[0], , nil)
releasem()
}
return true
}
// There was an old finalizer
lock(&mheap_.speciallock)
mheap_.specialfinalizeralloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
return false
}
// Removes the finalizer (if any) from the object p.
func removefinalizer( unsafe.Pointer) {
:= (*specialfinalizer)(unsafe.Pointer(removespecial(, _KindSpecialFinalizer)))
if == nil {
return // there wasn't a finalizer to remove
}
lock(&mheap_.speciallock)
mheap_.specialfinalizeralloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
}
// The described object has a cleanup set for it.
type specialCleanup struct {
_ sys.NotInHeap
special special
fn *funcval
// Globally unique ID for the cleanup, obtained from mheap_.cleanupID.
id uint64
}
// addCleanup attaches a cleanup function to the object. Multiple
// cleanups are allowed on an object, and even the same pointer.
// A cleanup id is returned which can be used to uniquely identify
// the cleanup.
func addCleanup( unsafe.Pointer, *funcval) uint64 {
lock(&mheap_.speciallock)
:= (*specialCleanup)(mheap_.specialCleanupAlloc.alloc())
mheap_.cleanupID++
:= mheap_.cleanupID
unlock(&mheap_.speciallock)
.special.kind = _KindSpecialCleanup
.fn =
.id =
:= acquirem()
addspecial(, &.special, true)
// This is responsible for maintaining the same
// GC-related invariants as markrootSpans in any
// situation where it's possible that markrootSpans
// has already run but mark termination hasn't yet.
if gcphase != _GCoff {
:= &.p.ptr().gcw
// Mark the cleanup itself, since the
// special isn't part of the GC'd heap.
scanblock(uintptr(unsafe.Pointer(&.fn)), goarch.PtrSize, &oneptrmask[0], , nil)
}
releasem()
// Keep f alive. There's a window in this function where it's
// only reachable via the special while the special hasn't been
// added to the specials list yet. This is similar to a bug
// discovered for weak handles, see #70455.
KeepAlive()
return
}
// The described object has a weak pointer.
//
// Weak pointers in the GC have the following invariants:
//
// - Strong-to-weak conversions must ensure the strong pointer
// remains live until the weak handle is installed. This ensures
// that creating a weak pointer cannot fail.
//
// - Weak-to-strong conversions require the weakly-referenced
// object to be swept before the conversion may proceed. This
// ensures that weak-to-strong conversions cannot resurrect
// dead objects by sweeping them before that happens.
//
// - Weak handles are unique and canonical for each byte offset into
// an object that a strong pointer may point to, until an object
// becomes unreachable.
//
// - Weak handles contain nil as soon as an object becomes unreachable
// the first time, before a finalizer makes it reachable again. New
// weak handles created after resurrection are newly unique.
//
// specialWeakHandle is allocated from non-GC'd memory, so any heap
// pointers must be specially handled.
type specialWeakHandle struct {
_ sys.NotInHeap
special special
// handle is a reference to the actual weak pointer.
// It is always heap-allocated and must be explicitly kept
// live so long as this special exists.
handle *atomic.Uintptr
}
//go:linkname internal_weak_runtime_registerWeakPointer weak.runtime_registerWeakPointer
func internal_weak_runtime_registerWeakPointer( unsafe.Pointer) unsafe.Pointer {
return unsafe.Pointer(getOrAddWeakHandle(unsafe.Pointer()))
}
//go:linkname internal_weak_runtime_makeStrongFromWeak weak.runtime_makeStrongFromWeak
func internal_weak_runtime_makeStrongFromWeak( unsafe.Pointer) unsafe.Pointer {
:= (*atomic.Uintptr)()
// Prevent preemption. We want to make sure that another GC cycle can't start
// and that work.strongFromWeak.block can't change out from under us.
:= acquirem()
// Yield to the GC if necessary.
if work.strongFromWeak.block {
releasem()
// Try to park and wait for mark termination.
// N.B. gcParkStrongFromWeak calls acquirem before returning.
= gcParkStrongFromWeak()
}
:= .Load()
if == 0 {
releasem()
return nil
}
// Be careful. p may or may not refer to valid memory anymore, as it could've been
// swept and released already. It's always safe to ensure a span is swept, though,
// even if it's just some random span.
:= spanOfHeap()
if == nil {
// The span probably got swept and released.
releasem()
return nil
}
// Ensure the span is swept.
.ensureSwept()
// Now we can trust whatever we get from handle, so make a strong pointer.
//
// Even if we just swept some random span that doesn't contain this object, because
// this object is long dead and its memory has since been reused, we'll just observe nil.
:= unsafe.Pointer(.Load())
// This is responsible for maintaining the same GC-related
// invariants as the Yuasa part of the write barrier. During
// the mark phase, it's possible that we just created the only
// valid pointer to the object pointed to by ptr. If it's only
// ever referenced from our stack, and our stack is blackened
// already, we could fail to mark it. So, mark it now.
if gcphase != _GCoff {
shade(uintptr())
}
releasem()
// Explicitly keep ptr alive. This seems unnecessary since we return ptr,
// but let's be explicit since it's important we keep ptr alive across the
// call to shade.
KeepAlive()
return
}
// gcParkStrongFromWeak puts the current goroutine on the weak->strong queue and parks.
func gcParkStrongFromWeak() *m {
// Prevent preemption as we check strongFromWeak, so it can't change out from under us.
:= acquirem()
for work.strongFromWeak.block {
lock(&work.strongFromWeak.lock)
releasem() // N.B. Holding the lock prevents preemption.
// Queue ourselves up.
work.strongFromWeak.q.pushBack(getg())
// Park.
goparkunlock(&work.strongFromWeak.lock, waitReasonGCWeakToStrongWait, traceBlockGCWeakToStrongWait, 2)
// Re-acquire the current M since we're going to check the condition again.
= acquirem()
// Re-check condition. We may have awoken in the next GC's mark termination phase.
}
return
}
// gcWakeAllStrongFromWeak wakes all currently blocked weak->strong
// conversions. This is used at the end of a GC cycle.
//
// work.strongFromWeak.block must be false to prevent woken goroutines
// from immediately going back to sleep.
func gcWakeAllStrongFromWeak() {
lock(&work.strongFromWeak.lock)
:= work.strongFromWeak.q.popList()
injectglist(&)
unlock(&work.strongFromWeak.lock)
}
// Retrieves or creates a weak pointer handle for the object p.
func getOrAddWeakHandle( unsafe.Pointer) *atomic.Uintptr {
// First try to retrieve without allocating.
if := getWeakHandle(); != nil {
// Keep p alive for the duration of the function to ensure
// that it cannot die while we're trying to do this.
KeepAlive()
return
}
lock(&mheap_.speciallock)
:= (*specialWeakHandle)(mheap_.specialWeakHandleAlloc.alloc())
unlock(&mheap_.speciallock)
:= new(atomic.Uintptr)
.special.kind = _KindSpecialWeakHandle
.handle =
.Store(uintptr())
if addspecial(, &.special, false) {
// This is responsible for maintaining the same
// GC-related invariants as markrootSpans in any
// situation where it's possible that markrootSpans
// has already run but mark termination hasn't yet.
if gcphase != _GCoff {
:= acquirem()
:= &.p.ptr().gcw
// Mark the weak handle itself, since the
// special isn't part of the GC'd heap.
scanblock(uintptr(unsafe.Pointer(&.handle)), goarch.PtrSize, &oneptrmask[0], , nil)
releasem()
}
// Keep p alive for the duration of the function to ensure
// that it cannot die while we're trying to do this.
//
// Same for handle, which is only stored in the special.
// There's a window where it might die if we don't keep it
// alive explicitly. Returning it here is probably good enough,
// but let's be defensive and explicit. See #70455.
KeepAlive()
KeepAlive()
return
}
// There was an existing handle. Free the special
// and try again. We must succeed because we're explicitly
// keeping p live until the end of this function. Either
// we, or someone else, must have succeeded, because we can
// only fail in the event of a race, and p will still be
// be valid no matter how much time we spend here.
lock(&mheap_.speciallock)
mheap_.specialWeakHandleAlloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
= getWeakHandle()
if == nil {
throw("failed to get or create weak handle")
}
// Keep p alive for the duration of the function to ensure
// that it cannot die while we're trying to do this.
//
// Same for handle, just to be defensive.
KeepAlive()
KeepAlive()
return
}
func getWeakHandle( unsafe.Pointer) *atomic.Uintptr {
:= spanOfHeap(uintptr())
if == nil {
throw("getWeakHandle on invalid pointer")
}
// Ensure that the span is swept.
// Sweeping accesses the specials list w/o locks, so we have
// to synchronize with it. And it's just much safer.
:= acquirem()
.ensureSwept()
:= uintptr() - .base()
lock(&.speciallock)
// Find the existing record and return the handle if one exists.
var *atomic.Uintptr
, := .specialFindSplicePoint(, _KindSpecialWeakHandle)
if {
= ((*specialWeakHandle)(unsafe.Pointer(*))).handle
}
unlock(&.speciallock)
releasem()
// Keep p alive for the duration of the function to ensure
// that it cannot die while we're trying to do this.
KeepAlive()
return
}
// The described object is being heap profiled.
type specialprofile struct {
_ sys.NotInHeap
special special
b *bucket
}
// Set the heap profile bucket associated with addr to b.
func setprofilebucket( unsafe.Pointer, *bucket) {
lock(&mheap_.speciallock)
:= (*specialprofile)(mheap_.specialprofilealloc.alloc())
unlock(&mheap_.speciallock)
.special.kind = _KindSpecialProfile
.b =
if !addspecial(, &.special, false) {
throw("setprofilebucket: profile already set")
}
}
// specialReachable tracks whether an object is reachable on the next
// GC cycle. This is used by testing.
type specialReachable struct {
special special
done bool
reachable bool
}
// specialPinCounter tracks whether an object is pinned multiple times.
type specialPinCounter struct {
special special
counter uintptr
}
// specialsIter helps iterate over specials lists.
type specialsIter struct {
pprev **special
s *special
}
func newSpecialsIter( *mspan) specialsIter {
return specialsIter{&.specials, .specials}
}
func ( *specialsIter) () bool {
return .s != nil
}
func ( *specialsIter) () {
.pprev = &.s.next
.s = *.pprev
}
// unlinkAndNext removes the current special from the list and moves
// the iterator to the next special. It returns the unlinked special.
func ( *specialsIter) () *special {
:= .s
.s = .next
*.pprev = .s
return
}
// freeSpecial performs any cleanup on special s and deallocates it.
// s must already be unlinked from the specials list.
func freeSpecial( *special, unsafe.Pointer, uintptr) {
switch .kind {
case _KindSpecialFinalizer:
:= (*specialfinalizer)(unsafe.Pointer())
queuefinalizer(, .fn, .nret, .fint, .ot)
lock(&mheap_.speciallock)
mheap_.specialfinalizeralloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
case _KindSpecialWeakHandle:
:= (*specialWeakHandle)(unsafe.Pointer())
.handle.Store(0)
lock(&mheap_.speciallock)
mheap_.specialWeakHandleAlloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
case _KindSpecialProfile:
:= (*specialprofile)(unsafe.Pointer())
mProf_Free(.b, )
lock(&mheap_.speciallock)
mheap_.specialprofilealloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
case _KindSpecialReachable:
:= (*specialReachable)(unsafe.Pointer())
.done = true
// The creator frees these.
case _KindSpecialPinCounter:
lock(&mheap_.speciallock)
mheap_.specialPinCounterAlloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
case _KindSpecialCleanup:
:= (*specialCleanup)(unsafe.Pointer())
// Cleanups, unlike finalizers, do not resurrect the objects
// they're attached to, so we only need to pass the cleanup
// function, not the object.
queuefinalizer(nil, .fn, 0, nil, nil)
lock(&mheap_.speciallock)
mheap_.specialCleanupAlloc.free(unsafe.Pointer())
unlock(&mheap_.speciallock)
default:
throw("bad special kind")
panic("not reached")
}
}
// gcBits is an alloc/mark bitmap. This is always used as gcBits.x.
type gcBits struct {
_ sys.NotInHeap
x uint8
}
// bytep returns a pointer to the n'th byte of b.
func ( *gcBits) ( uintptr) *uint8 {
return addb(&.x, )
}
// bitp returns a pointer to the byte containing bit n and a mask for
// selecting that bit from *bytep.
func ( *gcBits) ( uintptr) ( *uint8, uint8) {
return .bytep( / 8), 1 << ( % 8)
}
const gcBitsChunkBytes = uintptr(64 << 10)
const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})
type gcBitsHeader struct {
free uintptr // free is the index into bits of the next free byte.
next uintptr // *gcBits triggers recursive type bug. (issue 14620)
}
type gcBitsArena struct {
_ sys.NotInHeap
// gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
free uintptr // free is the index into bits of the next free byte; read/write atomically
next *gcBitsArena
bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
}
var gcBitsArenas struct {
lock mutex
free *gcBitsArena
next *gcBitsArena // Read atomically. Write atomically under lock.
current *gcBitsArena
previous *gcBitsArena
}
// tryAlloc allocates from b or returns nil if b does not have enough room.
// This is safe to call concurrently.
func ( *gcBitsArena) ( uintptr) *gcBits {
if == nil || atomic.Loaduintptr(&.free)+ > uintptr(len(.bits)) {
return nil
}
// Try to allocate from this block.
:= atomic.Xadduintptr(&.free, )
if > uintptr(len(.bits)) {
return nil
}
// There was enough room.
:= -
return &.bits[]
}
// newMarkBits returns a pointer to 8 byte aligned bytes
// to be used for a span's mark bits.
func newMarkBits( uintptr) *gcBits {
:= ( + 63) / 64
:= * 8
// Try directly allocating from the current head arena.
:= (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
if := .tryAlloc(); != nil {
return
}
// There's not enough room in the head arena. We may need to
// allocate a new arena.
lock(&gcBitsArenas.lock)
// Try the head arena again, since it may have changed. Now
// that we hold the lock, the list head can't change, but its
// free position still can.
if := gcBitsArenas.next.tryAlloc(); != nil {
unlock(&gcBitsArenas.lock)
return
}
// Allocate a new arena. This may temporarily drop the lock.
:= newArenaMayUnlock()
// If newArenaMayUnlock dropped the lock, another thread may
// have put a fresh arena on the "next" list. Try allocating
// from next again.
if := gcBitsArenas.next.tryAlloc(); != nil {
// Put fresh back on the free list.
// TODO: Mark it "already zeroed"
.next = gcBitsArenas.free
gcBitsArenas.free =
unlock(&gcBitsArenas.lock)
return
}
// Allocate from the fresh arena. We haven't linked it in yet, so
// this cannot race and is guaranteed to succeed.
:= .tryAlloc()
if == nil {
throw("markBits overflow")
}
// Add the fresh arena to the "next" list.
.next = gcBitsArenas.next
atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer())
unlock(&gcBitsArenas.lock)
return
}
// newAllocBits returns a pointer to 8 byte aligned bytes
// to be used for this span's alloc bits.
// newAllocBits is used to provide newly initialized spans
// allocation bits. For spans not being initialized the
// mark bits are repurposed as allocation bits when
// the span is swept.
func newAllocBits( uintptr) *gcBits {
return newMarkBits()
}
// nextMarkBitArenaEpoch establishes a new epoch for the arenas
// holding the mark bits. The arenas are named relative to the
// current GC cycle which is demarcated by the call to finishweep_m.
//
// All current spans have been swept.
// During that sweep each span allocated room for its gcmarkBits in
// gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
// where the GC will mark objects and after each span is swept these bits
// will be used to allocate objects.
// gcBitsArenas.current becomes gcBitsArenas.previous where the span's
// gcAllocBits live until all the spans have been swept during this GC cycle.
// The span's sweep extinguishes all the references to gcBitsArenas.previous
// by pointing gcAllocBits into the gcBitsArenas.current.
// The gcBitsArenas.previous is released to the gcBitsArenas.free list.
func nextMarkBitArenaEpoch() {
lock(&gcBitsArenas.lock)
if gcBitsArenas.previous != nil {
if gcBitsArenas.free == nil {
gcBitsArenas.free = gcBitsArenas.previous
} else {
// Find end of previous arenas.
:= gcBitsArenas.previous
for = gcBitsArenas.previous; .next != nil; = .next {
}
.next = gcBitsArenas.free
gcBitsArenas.free = gcBitsArenas.previous
}
}
gcBitsArenas.previous = gcBitsArenas.current
gcBitsArenas.current = gcBitsArenas.next
atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
unlock(&gcBitsArenas.lock)
}
// newArenaMayUnlock allocates and zeroes a gcBits arena.
// The caller must hold gcBitsArena.lock. This may temporarily release it.
func newArenaMayUnlock() *gcBitsArena {
var *gcBitsArena
if gcBitsArenas.free == nil {
unlock(&gcBitsArenas.lock)
= (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys))
if == nil {
throw("runtime: cannot allocate memory")
}
lock(&gcBitsArenas.lock)
} else {
= gcBitsArenas.free
gcBitsArenas.free = gcBitsArenas.free.next
memclrNoHeapPointers(unsafe.Pointer(), gcBitsChunkBytes)
}
.next = nil
// If result.bits is not 8 byte aligned adjust index so
// that &result.bits[result.free] is 8 byte aligned.
if unsafe.Offsetof(gcBitsArena{}.bits)&7 == 0 {
.free = 0
} else {
.free = 8 - (uintptr(unsafe.Pointer(&.bits[0])) & 7)
}
return
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |