// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Malloc profiling.
// Patterned after tcmalloc's algorithms; shorter code.

package runtime

import (
	
	
	
	
)

// NOTE(rsc): Everything here could use cas if contention became an issue.
var (
	// profInsertLock protects changes to the start of all *bucket linked lists
	profInsertLock mutex
	// profBlockLock protects the contents of every blockRecord struct
	profBlockLock mutex
	// profMemActiveLock protects the active field of every memRecord struct
	profMemActiveLock mutex
	// profMemFutureLock is a set of locks that protect the respective elements
	// of the future array of every memRecord struct
	profMemFutureLock [len(memRecord{}.future)]mutex
)

// All memory allocations are local and do not escape outside of the profiler.
// The profiler is forbidden from referring to garbage-collected memory.

const (
	// profile types
	memProfile bucketType = 1 + iota
	blockProfile
	mutexProfile

	// size of bucket hash table
	buckHashSize = 179999

	// maxStack is the max depth of stack to record in bucket.
	// Note that it's only used internally as a guard against
	// wildly out-of-bounds slicing of the PCs that come after
	// a bucket struct, and it could increase in the future.
	maxStack = 32
)

type bucketType int

// A bucket holds per-call-stack profiling information.
// The representation is a bit sleazy, inherited from C.
// This struct defines the bucket header. It is followed in
// memory by the stack words and then the actual record
// data, either a memRecord or a blockRecord.
//
// Per-call-stack profiling information.
// Lookup by hashing call stack into a linked-list hash table.
//
// None of the fields in this bucket header are modified after
// creation, including its next and allnext links.
//
// No heap pointers.
type bucket struct {
	_       sys.NotInHeap
	next    *bucket
	allnext *bucket
	typ     bucketType // memBucket or blockBucket (includes mutexProfile)
	hash    uintptr
	size    uintptr
	nstk    uintptr
}

// A memRecord is the bucket data for a bucket of type memProfile,
// part of the memory profile.
type memRecord struct {
	// The following complex 3-stage scheme of stats accumulation
	// is required to obtain a consistent picture of mallocs and frees
	// for some point in time.
	// The problem is that mallocs come in real time, while frees
	// come only after a GC during concurrent sweeping. So if we would
	// naively count them, we would get a skew toward mallocs.
	//
	// Hence, we delay information to get consistent snapshots as
	// of mark termination. Allocations count toward the next mark
	// termination's snapshot, while sweep frees count toward the
	// previous mark termination's snapshot:
	//
	//              MT          MT          MT          MT
	//             .·|         .·|         .·|         .·|
	//          .·˙  |      .·˙  |      .·˙  |      .·˙  |
	//       .·˙     |   .·˙     |   .·˙     |   .·˙     |
	//    .·˙        |.·˙        |.·˙        |.·˙        |
	//
	//       alloc → ▲ ← free
	//               ┠┅┅┅┅┅┅┅┅┅┅┅P
	//       C+2     →    C+1    →  C
	//
	//                   alloc → ▲ ← free
	//                           ┠┅┅┅┅┅┅┅┅┅┅┅P
	//                   C+2     →    C+1    →  C
	//
	// Since we can't publish a consistent snapshot until all of
	// the sweep frees are accounted for, we wait until the next
	// mark termination ("MT" above) to publish the previous mark
	// termination's snapshot ("P" above). To do this, allocation
	// and free events are accounted to *future* heap profile
	// cycles ("C+n" above) and we only publish a cycle once all
	// of the events from that cycle must be done. Specifically:
	//
	// Mallocs are accounted to cycle C+2.
	// Explicit frees are accounted to cycle C+2.
	// GC frees (done during sweeping) are accounted to cycle C+1.
	//
	// After mark termination, we increment the global heap
	// profile cycle counter and accumulate the stats from cycle C
	// into the active profile.

	// active is the currently published profile. A profiling
	// cycle can be accumulated into active once its complete.
	active memRecordCycle

	// future records the profile events we're counting for cycles
	// that have not yet been published. This is ring buffer
	// indexed by the global heap profile cycle C and stores
	// cycles C, C+1, and C+2. Unlike active, these counts are
	// only for a single cycle; they are not cumulative across
	// cycles.
	//
	// We store cycle C here because there's a window between when
	// C becomes the active cycle and when we've flushed it to
	// active.
	future [3]memRecordCycle
}

// memRecordCycle
type memRecordCycle struct {
	allocs, frees           uintptr
	alloc_bytes, free_bytes uintptr
}

// add accumulates b into a. It does not zero b.
func ( *memRecordCycle) ( *memRecordCycle) {
	.allocs += .allocs
	.frees += .frees
	.alloc_bytes += .alloc_bytes
	.free_bytes += .free_bytes
}

// A blockRecord is the bucket data for a bucket of type blockProfile,
// which is used in blocking and mutex profiles.
type blockRecord struct {
	count  float64
	cycles int64
}

var (
	mbuckets atomic.UnsafePointer // *bucket, memory profile buckets
	bbuckets atomic.UnsafePointer // *bucket, blocking profile buckets
	xbuckets atomic.UnsafePointer // *bucket, mutex profile buckets
	buckhash atomic.UnsafePointer // *buckhashArray

	mProfCycle mProfCycleHolder
)

type buckhashArray [buckHashSize]atomic.UnsafePointer // *bucket

const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)

// mProfCycleHolder holds the global heap profile cycle number (wrapped at
// mProfCycleWrap, stored starting at bit 1), and a flag (stored at bit 0) to
// indicate whether future[cycle] in all buckets has been queued to flush into
// the active profile.
type mProfCycleHolder struct {
	value atomic.Uint32
}

// read returns the current cycle count.
func ( *mProfCycleHolder) () ( uint32) {
	 := .value.Load()
	 =  >> 1
	return 
}

// setFlushed sets the flushed flag. It returns the current cycle count and the
// previous value of the flushed flag.
func ( *mProfCycleHolder) () ( uint32,  bool) {
	for {
		 := .value.Load()
		 =  >> 1
		 = ( & 0x1) != 0
		 :=  | 0x1
		if .value.CompareAndSwap(, ) {
			return , 
		}
	}
}

// increment increases the cycle count by one, wrapping the value at
// mProfCycleWrap. It clears the flushed flag.
func ( *mProfCycleHolder) () {
	// We explicitly wrap mProfCycle rather than depending on
	// uint wraparound because the memRecord.future ring does not
	// itself wrap at a power of two.
	for {
		 := .value.Load()
		 :=  >> 1
		 = ( + 1) % mProfCycleWrap
		 :=  << 1
		if .value.CompareAndSwap(, ) {
			break
		}
	}
}

// newBucket allocates a bucket with the given type and number of stack entries.
func newBucket( bucketType,  int) *bucket {
	 := unsafe.Sizeof(bucket{}) + uintptr()*unsafe.Sizeof(uintptr(0))
	switch  {
	default:
		throw("invalid profile bucket type")
	case memProfile:
		 += unsafe.Sizeof(memRecord{})
	case blockProfile, mutexProfile:
		 += unsafe.Sizeof(blockRecord{})
	}

	 := (*bucket)(persistentalloc(, 0, &memstats.buckhash_sys))
	.typ = 
	.nstk = uintptr()
	return 
}

// stk returns the slice in b holding the stack.
func ( *bucket) () []uintptr {
	 := (*[maxStack]uintptr)(add(unsafe.Pointer(), unsafe.Sizeof(*)))
	if .nstk > maxStack {
		// prove that slicing works; otherwise a failure requires a P
		throw("bad profile stack count")
	}
	return [:.nstk:.nstk]
}

// mp returns the memRecord associated with the memProfile bucket b.
func ( *bucket) () *memRecord {
	if .typ != memProfile {
		throw("bad use of bucket.mp")
	}
	 := add(unsafe.Pointer(), unsafe.Sizeof(*)+.nstk*unsafe.Sizeof(uintptr(0)))
	return (*memRecord)()
}

// bp returns the blockRecord associated with the blockProfile bucket b.
func ( *bucket) () *blockRecord {
	if .typ != blockProfile && .typ != mutexProfile {
		throw("bad use of bucket.bp")
	}
	 := add(unsafe.Pointer(), unsafe.Sizeof(*)+.nstk*unsafe.Sizeof(uintptr(0)))
	return (*blockRecord)()
}

// Return the bucket for stk[0:nstk], allocating new bucket if needed.
func stkbucket( bucketType,  uintptr,  []uintptr,  bool) *bucket {
	 := (*buckhashArray)(buckhash.Load())
	if  == nil {
		lock(&profInsertLock)
		// check again under the lock
		 = (*buckhashArray)(buckhash.Load())
		if  == nil {
			 = (*buckhashArray)(sysAlloc(unsafe.Sizeof(buckhashArray{}), &memstats.buckhash_sys))
			if  == nil {
				throw("runtime: cannot allocate memory")
			}
			buckhash.StoreNoWB(unsafe.Pointer())
		}
		unlock(&profInsertLock)
	}

	// Hash stack.
	var  uintptr
	for ,  := range  {
		 += 
		 +=  << 10
		 ^=  >> 6
	}
	// hash in size
	 += 
	 +=  << 10
	 ^=  >> 6
	// finalize
	 +=  << 3
	 ^=  >> 11

	 := int( % buckHashSize)
	// first check optimistically, without the lock
	for  := (*bucket)([].Load());  != nil;  = .next {
		if .typ ==  && .hash ==  && .size ==  && eqslice(.stk(), ) {
			return 
		}
	}

	if ! {
		return nil
	}

	lock(&profInsertLock)
	// check again under the insertion lock
	for  := (*bucket)([].Load());  != nil;  = .next {
		if .typ ==  && .hash ==  && .size ==  && eqslice(.stk(), ) {
			unlock(&profInsertLock)
			return 
		}
	}

	// Create new bucket.
	 := newBucket(, len())
	copy(.stk(), )
	.hash = 
	.size = 

	var  *atomic.UnsafePointer
	if  == memProfile {
		 = &mbuckets
	} else if  == mutexProfile {
		 = &xbuckets
	} else {
		 = &bbuckets
	}

	.next = (*bucket)([].Load())
	.allnext = (*bucket)(.Load())

	[].StoreNoWB(unsafe.Pointer())
	.StoreNoWB(unsafe.Pointer())

	unlock(&profInsertLock)
	return 
}

func eqslice(,  []uintptr) bool {
	if len() != len() {
		return false
	}
	for ,  := range  {
		if  != [] {
			return false
		}
	}
	return true
}

// mProf_NextCycle publishes the next heap profile cycle and creates a
// fresh heap profile cycle. This operation is fast and can be done
// during STW. The caller must call mProf_Flush before calling
// mProf_NextCycle again.
//
// This is called by mark termination during STW so allocations and
// frees after the world is started again count towards a new heap
// profiling cycle.
func mProf_NextCycle() {
	mProfCycle.increment()
}

// mProf_Flush flushes the events from the current heap profiling
// cycle into the active profile. After this it is safe to start a new
// heap profiling cycle with mProf_NextCycle.
//
// This is called by GC after mark termination starts the world. In
// contrast with mProf_NextCycle, this is somewhat expensive, but safe
// to do concurrently.
func mProf_Flush() {
	,  := mProfCycle.setFlushed()
	if  {
		return
	}

	 :=  % uint32(len(memRecord{}.future))
	lock(&profMemActiveLock)
	lock(&profMemFutureLock[])
	mProf_FlushLocked()
	unlock(&profMemFutureLock[])
	unlock(&profMemActiveLock)
}

// mProf_FlushLocked flushes the events from the heap profiling cycle at index
// into the active profile. The caller must hold the lock for the active profile
// (profMemActiveLock) and for the profiling cycle at index
// (profMemFutureLock[index]).
func mProf_FlushLocked( uint32) {
	assertLockHeld(&profMemActiveLock)
	assertLockHeld(&profMemFutureLock[])
	 := (*bucket)(mbuckets.Load())
	for  := ;  != nil;  = .allnext {
		 := .mp()

		// Flush cycle C into the published profile and clear
		// it for reuse.
		 := &.future[]
		.active.add()
		* = memRecordCycle{}
	}
}

// mProf_PostSweep records that all sweep frees for this GC cycle have
// completed. This has the effect of publishing the heap profile
// snapshot as of the last mark termination without advancing the heap
// profile cycle.
func mProf_PostSweep() {
	// Flush cycle C+1 to the active profile so everything as of
	// the last mark termination becomes visible. *Don't* advance
	// the cycle, since we're still accumulating allocs in cycle
	// C+2, which have to become C+1 in the next mark termination
	// and so on.
	 := mProfCycle.read() + 1

	 :=  % uint32(len(memRecord{}.future))
	lock(&profMemActiveLock)
	lock(&profMemFutureLock[])
	mProf_FlushLocked()
	unlock(&profMemFutureLock[])
	unlock(&profMemActiveLock)
}

// Called by malloc to record a profiled block.
func mProf_Malloc( unsafe.Pointer,  uintptr) {
	var  [maxStack]uintptr
	 := callers(4, [:])

	 := (mProfCycle.read() + 2) % uint32(len(memRecord{}.future))

	 := stkbucket(memProfile, , [:], true)
	 := .mp()
	 := &.future[]

	lock(&profMemFutureLock[])
	.allocs++
	.alloc_bytes += 
	unlock(&profMemFutureLock[])

	// Setprofilebucket locks a bunch of other mutexes, so we call it outside of
	// the profiler locks. This reduces potential contention and chances of
	// deadlocks. Since the object must be alive during the call to
	// mProf_Malloc, it's fine to do this non-atomically.
	systemstack(func() {
		setprofilebucket(, )
	})
}

// Called when freeing a profiled block.
func mProf_Free( *bucket,  uintptr) {
	 := (mProfCycle.read() + 1) % uint32(len(memRecord{}.future))

	 := .mp()
	 := &.future[]

	lock(&profMemFutureLock[])
	.frees++
	.free_bytes += 
	unlock(&profMemFutureLock[])
}

var blockprofilerate uint64 // in CPU ticks

// SetBlockProfileRate controls the fraction of goroutine blocking events
// that are reported in the blocking profile. The profiler aims to sample
// an average of one blocking event per rate nanoseconds spent blocked.
//
// To include every blocking event in the profile, pass rate = 1.
// To turn off profiling entirely, pass rate <= 0.
func ( int) {
	var  int64
	if  <= 0 {
		 = 0 // disable profiling
	} else if  == 1 {
		 = 1 // profile everything
	} else {
		// convert ns to cycles, use float64 to prevent overflow during multiplication
		 = int64(float64() * float64(ticksPerSecond()) / (1000 * 1000 * 1000))
		if  == 0 {
			 = 1
		}
	}

	atomic.Store64(&blockprofilerate, uint64())
}

func blockevent( int64,  int) {
	if  <= 0 {
		 = 1
	}

	 := int64(atomic.Load64(&blockprofilerate))
	if blocksampled(, ) {
		saveblockevent(, , +1, blockProfile)
	}
}

// blocksampled returns true for all events where cycles >= rate. Shorter
// events have a cycles/rate random chance of returning true.
func blocksampled(,  int64) bool {
	if  <= 0 || ( >  && cheaprand64()% > ) {
		return false
	}
	return true
}

func saveblockevent(,  int64,  int,  bucketType) {
	 := getg()
	var  int
	var  [maxStack]uintptr
	if .m.curg == nil || .m.curg ==  {
		 = callers(, [:])
	} else {
		 = gcallers(.m.curg, , [:])
	}

	saveBlockEventStack(, , [:], )
}

// lockTimer assists with profiling contention on runtime-internal locks.
//
// There are several steps between the time that an M experiences contention and
// when that contention may be added to the profile. This comes from our
// constraints: We need to keep the critical section of each lock small,
// especially when those locks are contended. The reporting code cannot acquire
// new locks until the M has released all other locks, which means no memory
// allocations and encourages use of (temporary) M-local storage.
//
// The M will have space for storing one call stack that caused contention, and
// for the magnitude of that contention. It will also have space to store the
// magnitude of additional contention the M caused, since it only has space to
// remember one call stack and might encounter several contention events before
// it releases all of its locks and is thus able to transfer the local buffer
// into the profile.
//
// The M will collect the call stack when it unlocks the contended lock. That
// minimizes the impact on the critical section of the contended lock, and
// matches the mutex profile's behavior for contention in sync.Mutex: measured
// at the Unlock method.
//
// The profile for contention on sync.Mutex blames the caller of Unlock for the
// amount of contention experienced by the callers of Lock which had to wait.
// When there are several critical sections, this allows identifying which of
// them is responsible.
//
// Matching that behavior for runtime-internal locks will require identifying
// which Ms are blocked on the mutex. The semaphore-based implementation is
// ready to allow that, but the futex-based implementation will require a bit
// more work. Until then, we report contention on runtime-internal locks with a
// call stack taken from the unlock call (like the rest of the user-space
// "mutex" profile), but assign it a duration value based on how long the
// previous lock call took (like the user-space "block" profile).
//
// Thus, reporting the call stacks of runtime-internal lock contention is
// guarded by GODEBUG for now. Set GODEBUG=runtimecontentionstacks=1 to enable.
//
// TODO(rhysh): plumb through the delay duration, remove GODEBUG, update comment
//
// The M will track this by storing a pointer to the lock; lock/unlock pairs for
// runtime-internal locks are always on the same M.
//
// Together, that demands several steps for recording contention. First, when
// finally acquiring a contended lock, the M decides whether it should plan to
// profile that event by storing a pointer to the lock in its "to be profiled
// upon unlock" field. If that field is already set, it uses the relative
// magnitudes to weight a random choice between itself and the other lock, with
// the loser's time being added to the "additional contention" field. Otherwise
// if the M's call stack buffer is occupied, it does the comparison against that
// sample's magnitude.
//
// Second, having unlocked a mutex the M checks to see if it should capture the
// call stack into its local buffer. Finally, when the M unlocks its last mutex,
// it transfers the local buffer into the profile. As part of that step, it also
// transfers any "additional contention" time to the profile. Any lock
// contention that it experiences while adding samples to the profile will be
// recorded later as "additional contention" and not include a call stack, to
// avoid an echo.
type lockTimer struct {
	lock      *mutex
	timeRate  int64
	timeStart int64
	tickStart int64
}

func ( *lockTimer) () {
	 := int64(atomic.Load64(&mutexprofilerate))

	.timeRate = gTrackingPeriod
	if  != 0 &&  < .timeRate {
		.timeRate = 
	}
	if int64(cheaprand())%.timeRate == 0 {
		.timeStart = nanotime()
	}

	if  > 0 && int64(cheaprand())% == 0 {
		.tickStart = cputicks()
	}
}

func ( *lockTimer) () {
	 := getg()

	if .timeStart != 0 {
		 := nanotime()
		.m.mLockProfile.waitTime.Add(( - .timeStart) * .timeRate)
	}

	if .tickStart != 0 {
		 := cputicks()
		.m.mLockProfile.recordLock(-.tickStart, .lock)
	}
}

type mLockProfile struct {
	waitTime   atomic.Int64      // total nanoseconds spent waiting in runtime.lockWithRank
	stack      [maxStack]uintptr // stack that experienced contention in runtime.lockWithRank
	pending    uintptr           // *mutex that experienced contention (to be traceback-ed)
	cycles     int64             // cycles attributable to "pending" (if set), otherwise to "stack"
	cyclesLost int64             // contention for which we weren't able to record a call stack
	disabled   bool              // attribute all time to "lost"
}

func ( *mLockProfile) ( int64,  *mutex) {
	if  <= 0 {
		return
	}

	if .disabled {
		// We're experiencing contention while attempting to report contention.
		// Make a note of its magnitude, but don't allow it to be the sole cause
		// of another contention report.
		.cyclesLost += 
		return
	}

	if uintptr(unsafe.Pointer()) == .pending {
		// Optimization: we'd already planned to profile this same lock (though
		// possibly from a different unlock site).
		.cycles += 
		return
	}

	if  := .cycles;  > 0 {
		// We can only store one call stack for runtime-internal lock contention
		// on this M, and we've already got one. Decide which should stay, and
		// add the other to the report for runtime._LostContendedRuntimeLock.
		 := uint64(cheaprand64()) % uint64()
		 := uint64(cheaprand64()) % uint64()
		if  >  {
			.cyclesLost += 
			return
		} else {
			.cyclesLost += 
		}
	}
	// Saving the *mutex as a uintptr is safe because:
	//  - lockrank_on.go does this too, which gives it regular exercise
	//  - the lock would only move if it's stack allocated, which means it
	//      cannot experience multi-M contention
	.pending = uintptr(unsafe.Pointer())
	.cycles = 
}

// From unlock2, we might not be holding a p in this code.
//
//go:nowritebarrierrec
func ( *mLockProfile) ( *mutex) {
	if uintptr(unsafe.Pointer()) == .pending {
		.captureStack()
	}
	if  := getg(); .m.locks == 1 && .m.mLockProfile.cycles != 0 {
		.store()
	}
}

func ( *mLockProfile) () {
	 := 3 // runtime.(*mLockProfile).recordUnlock runtime.unlock2 runtime.unlockWithRank
	if staticLockRanking {
		// When static lock ranking is enabled, we'll always be on the system
		// stack at this point. There will be a runtime.unlockWithRank.func1
		// frame, and if the call to runtime.unlock took place on a user stack
		// then there'll also be a runtime.systemstack frame. To keep stack
		// traces somewhat consistent whether or not static lock ranking is
		// enabled, we'd like to skip those. But it's hard to tell how long
		// we've been on the system stack so accept an extra frame in that case,
		// with a leaf of "runtime.unlockWithRank runtime.unlock" instead of
		// "runtime.unlock".
		 += 1 // runtime.unlockWithRank.func1
	}
	.pending = 0

	if debug.runtimeContentionStacks.Load() == 0 {
		.stack[0] = abi.FuncPCABIInternal(_LostContendedRuntimeLock) + sys.PCQuantum
		.stack[1] = 0
		return
	}

	var  int
	 := getg()
	 := getcallersp()
	 := getcallerpc()
	systemstack(func() {
		var  unwinder
		.initAt(, , 0, , unwindSilentErrors|unwindJumpStack)
		 = tracebackPCs(&, , .stack[:])
	})
	if  < len(.stack) {
		.stack[] = 0
	}
}

func ( *mLockProfile) () {
	// Report any contention we experience within this function as "lost"; it's
	// important that the act of reporting a contention event not lead to a
	// reportable contention event. This also means we can use prof.stack
	// without copying, since it won't change during this function.
	 := acquirem()
	.disabled = true

	 := maxStack
	for  := 0;  < ; ++ {
		if  := .stack[];  == 0 {
			 = 
			break
		}
	}

	,  := .cycles, .cyclesLost
	.cycles, .cyclesLost = 0, 0

	 := int64(atomic.Load64(&mutexprofilerate))
	saveBlockEventStack(, , .stack[:], mutexProfile)
	if  > 0 {
		 := [...]uintptr{
			abi.FuncPCABIInternal(_LostContendedRuntimeLock) + sys.PCQuantum,
		}
		saveBlockEventStack(, , [:], mutexProfile)
	}

	.disabled = false
	releasem()
}

func saveBlockEventStack(,  int64,  []uintptr,  bucketType) {
	 := stkbucket(, 0, , true)
	 := .bp()

	lock(&profBlockLock)
	// We want to up-scale the count and cycles according to the
	// probability that the event was sampled. For block profile events,
	// the sample probability is 1 if cycles >= rate, and cycles / rate
	// otherwise. For mutex profile events, the sample probability is 1 / rate.
	// We scale the events by 1 / (probability the event was sampled).
	if  == blockProfile &&  <  {
		// Remove sampling bias, see discussion on http://golang.org/cl/299991.
		.count += float64() / float64()
		.cycles += 
	} else if  == mutexProfile {
		.count += float64()
		.cycles +=  * 
	} else {
		.count++
		.cycles += 
	}
	unlock(&profBlockLock)
}

var mutexprofilerate uint64 // fraction sampled

// SetMutexProfileFraction controls the fraction of mutex contention events
// that are reported in the mutex profile. On average 1/rate events are
// reported. The previous rate is returned.
//
// To turn off profiling entirely, pass rate 0.
// To just read the current rate, pass rate < 0.
// (For n>1 the details of sampling may change.)
func ( int) int {
	if  < 0 {
		return int(mutexprofilerate)
	}
	 := mutexprofilerate
	atomic.Store64(&mutexprofilerate, uint64())
	return int()
}

//go:linkname mutexevent sync.event
func mutexevent( int64,  int) {
	if  < 0 {
		 = 0
	}
	 := int64(atomic.Load64(&mutexprofilerate))
	if  > 0 && cheaprand64()% == 0 {
		saveblockevent(, , +1, mutexProfile)
	}
}

// Go interface to profile data.

// A StackRecord describes a single execution stack.
type StackRecord struct {
	Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}

// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func ( *StackRecord) () []uintptr {
	for ,  := range .Stack0 {
		if  == 0 {
			return .Stack0[0:]
		}
	}
	return .Stack0[0:]
}

// MemProfileRate controls the fraction of memory allocations
// that are recorded and reported in the memory profile.
// The profiler aims to sample an average of
// one allocation per MemProfileRate bytes allocated.
//
// To include every allocated block in the profile, set MemProfileRate to 1.
// To turn off profiling entirely, set MemProfileRate to 0.
//
// The tools that process the memory profiles assume that the
// profile rate is constant across the lifetime of the program
// and equal to the current value. Programs that change the
// memory profiling rate should do so just once, as early as
// possible in the execution of the program (for example,
// at the beginning of main).
var MemProfileRate int = 512 * 1024

// disableMemoryProfiling is set by the linker if runtime.MemProfile
// is not used and the link type guarantees nobody else could use it
// elsewhere.
var disableMemoryProfiling bool

// A MemProfileRecord describes the live objects allocated
// by a particular call sequence (stack trace).
type MemProfileRecord struct {
	AllocBytes, FreeBytes     int64       // number of bytes allocated, freed
	AllocObjects, FreeObjects int64       // number of objects allocated, freed
	Stack0                    [32]uintptr // stack trace for this record; ends at first 0 entry
}

// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
func ( *MemProfileRecord) () int64 { return .AllocBytes - .FreeBytes }

// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
func ( *MemProfileRecord) () int64 {
	return .AllocObjects - .FreeObjects
}

// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func ( *MemProfileRecord) () []uintptr {
	for ,  := range .Stack0 {
		if  == 0 {
			return .Stack0[0:]
		}
	}
	return .Stack0[0:]
}

// MemProfile returns a profile of memory allocated and freed per allocation
// site.
//
// MemProfile returns n, the number of records in the current memory profile.
// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
// If len(p) < n, MemProfile does not change p and returns n, false.
//
// If inuseZero is true, the profile includes allocation records
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
// These are sites where memory was allocated, but it has all
// been released back to the runtime.
//
// The returned profile may be up to two garbage collection cycles old.
// This is to avoid skewing the profile toward allocations; because
// allocations happen in real time but frees are delayed until the garbage
// collector performs sweeping, the profile only accounts for allocations
// that have had a chance to be freed by the garbage collector.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.memprofile flag instead
// of calling MemProfile directly.
func ( []MemProfileRecord,  bool) ( int,  bool) {
	 := mProfCycle.read()
	// If we're between mProf_NextCycle and mProf_Flush, take care
	// of flushing to the active profile so we only have to look
	// at the active profile below.
	 :=  % uint32(len(memRecord{}.future))
	lock(&profMemActiveLock)
	lock(&profMemFutureLock[])
	mProf_FlushLocked()
	unlock(&profMemFutureLock[])
	 := true
	 := (*bucket)(mbuckets.Load())
	for  := ;  != nil;  = .allnext {
		 := .mp()
		if  || .active.alloc_bytes != .active.free_bytes {
			++
		}
		if .active.allocs != 0 || .active.frees != 0 {
			 = false
		}
	}
	if  {
		// Absolutely no data, suggesting that a garbage collection
		// has not yet happened. In order to allow profiling when
		// garbage collection is disabled from the beginning of execution,
		// accumulate all of the cycles, and recount buckets.
		 = 0
		for  := ;  != nil;  = .allnext {
			 := .mp()
			for  := range .future {
				lock(&profMemFutureLock[])
				.active.add(&.future[])
				.future[] = memRecordCycle{}
				unlock(&profMemFutureLock[])
			}
			if  || .active.alloc_bytes != .active.free_bytes {
				++
			}
		}
	}
	if  <= len() {
		 = true
		 := 0
		for  := ;  != nil;  = .allnext {
			 := .mp()
			if  || .active.alloc_bytes != .active.free_bytes {
				record(&[], )
				++
			}
		}
	}
	unlock(&profMemActiveLock)
	return
}

// Write b's data to r.
func record( *MemProfileRecord,  *bucket) {
	 := .mp()
	.AllocBytes = int64(.active.alloc_bytes)
	.FreeBytes = int64(.active.free_bytes)
	.AllocObjects = int64(.active.allocs)
	.FreeObjects = int64(.active.frees)
	if raceenabled {
		racewriterangepc(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0), getcallerpc(), abi.FuncPCABIInternal(MemProfile))
	}
	if msanenabled {
		msanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
	}
	if asanenabled {
		asanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
	}
	copy(.Stack0[:], .stk())
	for  := int(.nstk);  < len(.Stack0); ++ {
		.Stack0[] = 0
	}
}

func iterate_memprof( func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
	lock(&profMemActiveLock)
	 := (*bucket)(mbuckets.Load())
	for  := ;  != nil;  = .allnext {
		 := .mp()
		(, .nstk, &.stk()[0], .size, .active.allocs, .active.frees)
	}
	unlock(&profMemActiveLock)
}

// BlockProfileRecord describes blocking events originated
// at a particular call sequence (stack trace).
type BlockProfileRecord struct {
	Count  int64
	Cycles int64
	StackRecord
}

// BlockProfile returns n, the number of records in the current blocking profile.
// If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
// If len(p) < n, BlockProfile does not change p and returns n, false.
//
// Most clients should use the [runtime/pprof] package or
// the [testing] package's -test.blockprofile flag instead
// of calling BlockProfile directly.
func ( []BlockProfileRecord) ( int,  bool) {
	lock(&profBlockLock)
	 := (*bucket)(bbuckets.Load())
	for  := ;  != nil;  = .allnext {
		++
	}
	if  <= len() {
		 = true
		for  := ;  != nil;  = .allnext {
			 := .bp()
			 := &[0]
			.Count = int64(.count)
			// Prevent callers from having to worry about division by zero errors.
			// See discussion on http://golang.org/cl/299991.
			if .Count == 0 {
				.Count = 1
			}
			.Cycles = .cycles
			if raceenabled {
				racewriterangepc(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0), getcallerpc(), abi.FuncPCABIInternal())
			}
			if msanenabled {
				msanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
			}
			if asanenabled {
				asanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
			}
			 := copy(.Stack0[:], .stk())
			for ;  < len(.Stack0); ++ {
				.Stack0[] = 0
			}
			 = [1:]
		}
	}
	unlock(&profBlockLock)
	return
}

// MutexProfile returns n, the number of records in the current mutex profile.
// If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
// Otherwise, MutexProfile does not change p, and returns n, false.
//
// Most clients should use the [runtime/pprof] package
// instead of calling MutexProfile directly.
func ( []BlockProfileRecord) ( int,  bool) {
	lock(&profBlockLock)
	 := (*bucket)(xbuckets.Load())
	for  := ;  != nil;  = .allnext {
		++
	}
	if  <= len() {
		 = true
		for  := ;  != nil;  = .allnext {
			 := .bp()
			 := &[0]
			.Count = int64(.count)
			.Cycles = .cycles
			 := copy(.Stack0[:], .stk())
			for ;  < len(.Stack0); ++ {
				.Stack0[] = 0
			}
			 = [1:]
		}
	}
	unlock(&profBlockLock)
	return
}

// ThreadCreateProfile returns n, the number of records in the thread creation profile.
// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
// If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package instead
// of calling ThreadCreateProfile directly.
func ( []StackRecord) ( int,  bool) {
	 := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
	for  := ;  != nil;  = .alllink {
		++
	}
	if  <= len() {
		 = true
		 := 0
		for  := ;  != nil;  = .alllink {
			[].Stack0 = .createstack
			++
		}
	}
	return
}

//go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels
func runtime_goroutineProfileWithLabels( []StackRecord,  []unsafe.Pointer) ( int,  bool) {
	return goroutineProfileWithLabels(, )
}

// labels may be nil. If labels is non-nil, it must have the same length as p.
func goroutineProfileWithLabels( []StackRecord,  []unsafe.Pointer) ( int,  bool) {
	if  != nil && len() != len() {
		 = nil
	}

	return goroutineProfileWithLabelsConcurrent(, )
}

var goroutineProfile = struct {
	sema    uint32
	active  bool
	offset  atomic.Int64
	records []StackRecord
	labels  []unsafe.Pointer
}{
	sema: 1,
}

// goroutineProfileState indicates the status of a goroutine's stack for the
// current in-progress goroutine profile. Goroutines' stacks are initially
// "Absent" from the profile, and end up "Satisfied" by the time the profile is
// complete. While a goroutine's stack is being captured, its
// goroutineProfileState will be "InProgress" and it will not be able to run
// until the capture completes and the state moves to "Satisfied".
//
// Some goroutines (the finalizer goroutine, which at various times can be
// either a "system" or a "user" goroutine, and the goroutine that is
// coordinating the profile, any goroutines created during the profile) move
// directly to the "Satisfied" state.
type goroutineProfileState uint32

const (
	goroutineProfileAbsent goroutineProfileState = iota
	goroutineProfileInProgress
	goroutineProfileSatisfied
)

type goroutineProfileStateHolder atomic.Uint32

func ( *goroutineProfileStateHolder) () goroutineProfileState {
	return goroutineProfileState((*atomic.Uint32)().Load())
}

func ( *goroutineProfileStateHolder) ( goroutineProfileState) {
	(*atomic.Uint32)().Store(uint32())
}

func ( *goroutineProfileStateHolder) (,  goroutineProfileState) bool {
	return (*atomic.Uint32)().CompareAndSwap(uint32(), uint32())
}

func goroutineProfileWithLabelsConcurrent( []StackRecord,  []unsafe.Pointer) ( int,  bool) {
	semacquire(&goroutineProfile.sema)

	 := getg()

	 := stopTheWorld(stwGoroutineProfile)
	// Using gcount while the world is stopped should give us a consistent view
	// of the number of live goroutines, minus the number of goroutines that are
	// alive and permanently marked as "system". But to make this count agree
	// with what we'd get from isSystemGoroutine, we need special handling for
	// goroutines that can vary between user and system to ensure that the count
	// doesn't change during the collection. So, check the finalizer goroutine
	// in particular.
	 = int(gcount())
	if fingStatus.Load()&fingRunningFinalizer != 0 {
		++
	}

	if  > len() {
		// There's not enough space in p to store the whole profile, so (per the
		// contract of runtime.GoroutineProfile) we're not allowed to write to p
		// at all and must return n, false.
		startTheWorld()
		semrelease(&goroutineProfile.sema)
		return , false
	}

	// Save current goroutine.
	 := getcallersp()
	 := getcallerpc()
	systemstack(func() {
		saveg(, , , &[0])
	})
	if  != nil {
		[0] = .labels
	}
	.goroutineProfiled.Store(goroutineProfileSatisfied)
	goroutineProfile.offset.Store(1)

	// Prepare for all other goroutines to enter the profile. Aside from ourg,
	// every goroutine struct in the allgs list has its goroutineProfiled field
	// cleared. Any goroutine created from this point on (while
	// goroutineProfile.active is set) will start with its goroutineProfiled
	// field set to goroutineProfileSatisfied.
	goroutineProfile.active = true
	goroutineProfile.records = 
	goroutineProfile.labels = 
	// The finalizer goroutine needs special handling because it can vary over
	// time between being a user goroutine (eligible for this profile) and a
	// system goroutine (to be excluded). Pick one before restarting the world.
	if fing != nil {
		fing.goroutineProfiled.Store(goroutineProfileSatisfied)
		if readgstatus(fing) != _Gdead && !isSystemGoroutine(fing, false) {
			doRecordGoroutineProfile(fing)
		}
	}
	startTheWorld()

	// Visit each goroutine that existed as of the startTheWorld call above.
	//
	// New goroutines may not be in this list, but we didn't want to know about
	// them anyway. If they do appear in this list (via reusing a dead goroutine
	// struct, or racing to launch between the world restarting and us getting
	// the list), they will already have their goroutineProfiled field set to
	// goroutineProfileSatisfied before their state transitions out of _Gdead.
	//
	// Any goroutine that the scheduler tries to execute concurrently with this
	// call will start by adding itself to the profile (before the act of
	// executing can cause any changes in its stack).
	forEachGRace(func( *g) {
		tryRecordGoroutineProfile(, Gosched)
	})

	 = stopTheWorld(stwGoroutineProfileCleanup)
	 := goroutineProfile.offset.Swap(0)
	goroutineProfile.active = false
	goroutineProfile.records = nil
	goroutineProfile.labels = nil
	startTheWorld()

	// Restore the invariant that every goroutine struct in allgs has its
	// goroutineProfiled field cleared.
	forEachGRace(func( *g) {
		.goroutineProfiled.Store(goroutineProfileAbsent)
	})

	if raceenabled {
		raceacquire(unsafe.Pointer(&labelSync))
	}

	if  != int() {
		// It's a big surprise that the number of goroutines changed while we
		// were collecting the profile. But probably better to return a
		// truncated profile than to crash the whole process.
		//
		// For instance, needm moves a goroutine out of the _Gdead state and so
		// might be able to change the goroutine count without interacting with
		// the scheduler. For code like that, the race windows are small and the
		// combination of features is uncommon, so it's hard to be (and remain)
		// sure we've caught them all.
	}

	semrelease(&goroutineProfile.sema)
	return , true
}

// tryRecordGoroutineProfileWB asserts that write barriers are allowed and calls
// tryRecordGoroutineProfile.
//
//go:yeswritebarrierrec
func tryRecordGoroutineProfileWB( *g) {
	if getg().m.p.ptr() == nil {
		throw("no P available, write barriers are forbidden")
	}
	tryRecordGoroutineProfile(, osyield)
}

// tryRecordGoroutineProfile ensures that gp1 has the appropriate representation
// in the current goroutine profile: either that it should not be profiled, or
// that a snapshot of its call stack and labels are now in the profile.
func tryRecordGoroutineProfile( *g,  func()) {
	if readgstatus() == _Gdead {
		// Dead goroutines should not appear in the profile. Goroutines that
		// start while profile collection is active will get goroutineProfiled
		// set to goroutineProfileSatisfied before transitioning out of _Gdead,
		// so here we check _Gdead first.
		return
	}
	if isSystemGoroutine(, true) {
		// System goroutines should not appear in the profile. (The finalizer
		// goroutine is marked as "already profiled".)
		return
	}

	for {
		 := .goroutineProfiled.Load()
		if  == goroutineProfileSatisfied {
			// This goroutine is already in the profile (or is new since the
			// start of collection, so shouldn't appear in the profile).
			break
		}
		if  == goroutineProfileInProgress {
			// Something else is adding gp1 to the goroutine profile right now.
			// Give that a moment to finish.
			()
			continue
		}

		// While we have gp1.goroutineProfiled set to
		// goroutineProfileInProgress, gp1 may appear _Grunnable but will not
		// actually be able to run. Disable preemption for ourselves, to make
		// sure we finish profiling gp1 right away instead of leaving it stuck
		// in this limbo.
		 := acquirem()
		if .goroutineProfiled.CompareAndSwap(goroutineProfileAbsent, goroutineProfileInProgress) {
			doRecordGoroutineProfile()
			.goroutineProfiled.Store(goroutineProfileSatisfied)
		}
		releasem()
	}
}

// doRecordGoroutineProfile writes gp1's call stack and labels to an in-progress
// goroutine profile. Preemption is disabled.
//
// This may be called via tryRecordGoroutineProfile in two ways: by the
// goroutine that is coordinating the goroutine profile (running on its own
// stack), or from the scheduler in preparation to execute gp1 (running on the
// system stack).
func doRecordGoroutineProfile( *g) {
	if readgstatus() == _Grunning {
		print("doRecordGoroutineProfile gp1=", .goid, "\n")
		throw("cannot read stack of running goroutine")
	}

	 := int(goroutineProfile.offset.Add(1)) - 1

	if  >= len(goroutineProfile.records) {
		// Should be impossible, but better to return a truncated profile than
		// to crash the entire process at this point. Instead, deal with it in
		// goroutineProfileWithLabelsConcurrent where we have more context.
		return
	}

	// saveg calls gentraceback, which may call cgo traceback functions. When
	// called from the scheduler, this is on the system stack already so
	// traceback.go:cgoContextPCs will avoid calling back into the scheduler.
	//
	// When called from the goroutine coordinating the profile, we still have
	// set gp1.goroutineProfiled to goroutineProfileInProgress and so are still
	// preventing it from being truly _Grunnable. So we'll use the system stack
	// to avoid schedule delays.
	systemstack(func() { saveg(^uintptr(0), ^uintptr(0), , &goroutineProfile.records[]) })

	if goroutineProfile.labels != nil {
		goroutineProfile.labels[] = .labels
	}
}

func goroutineProfileWithLabelsSync( []StackRecord,  []unsafe.Pointer) ( int,  bool) {
	 := getg()

	 := func( *g) bool {
		// Checking isSystemGoroutine here makes GoroutineProfile
		// consistent with both NumGoroutine and Stack.
		return  !=  && readgstatus() != _Gdead && !isSystemGoroutine(, false)
	}

	 := stopTheWorld(stwGoroutineProfile)

	// World is stopped, no locking required.
	 = 1
	forEachGRace(func( *g) {
		if () {
			++
		}
	})

	if  <= len() {
		 = true
		,  := , 

		// Save current goroutine.
		 := getcallersp()
		 := getcallerpc()
		systemstack(func() {
			saveg(, , , &[0])
		})
		 = [1:]

		// If we have a place to put our goroutine labelmap, insert it there.
		if  != nil {
			[0] = .labels
			 = [1:]
		}

		// Save other goroutines.
		forEachGRace(func( *g) {
			if !() {
				return
			}

			if len() == 0 {
				// Should be impossible, but better to return a
				// truncated profile than to crash the entire process.
				return
			}
			// saveg calls gentraceback, which may call cgo traceback functions.
			// The world is stopped, so it cannot use cgocall (which will be
			// blocked at exitsyscall). Do it on the system stack so it won't
			// call into the schedular (see traceback.go:cgoContextPCs).
			systemstack(func() { saveg(^uintptr(0), ^uintptr(0), , &[0]) })
			if  != nil {
				[0] = .labels
				 = [1:]
			}
			 = [1:]
		})
	}

	if raceenabled {
		raceacquire(unsafe.Pointer(&labelSync))
	}

	startTheWorld()
	return , 
}

// GoroutineProfile returns n, the number of records in the active goroutine stack profile.
// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
// If len(p) < n, GoroutineProfile does not change p and returns n, false.
//
// Most clients should use the [runtime/pprof] package instead
// of calling GoroutineProfile directly.
func ( []StackRecord) ( int,  bool) {

	return goroutineProfileWithLabels(, nil)
}

func saveg(,  uintptr,  *g,  *StackRecord) {
	var  unwinder
	.initAt(, , 0, , unwindSilentErrors)
	 := tracebackPCs(&, 0, .Stack0[:])
	if  < len(.Stack0) {
		.Stack0[] = 0
	}
}

// Stack formats a stack trace of the calling goroutine into buf
// and returns the number of bytes written to buf.
// If all is true, Stack formats stack traces of all other goroutines
// into buf after the trace for the current goroutine.
func ( []byte,  bool) int {
	var  worldStop
	if  {
		 = stopTheWorld(stwAllGoroutinesStack)
	}

	 := 0
	if len() > 0 {
		 := getg()
		 := getcallersp()
		 := getcallerpc()
		systemstack(func() {
			 := getg()
			// Force traceback=1 to override GOTRACEBACK setting,
			// so that Stack's results are consistent.
			// GOTRACEBACK is only about crash dumps.
			.m.traceback = 1
			.writebuf = [0:0:len()]
			goroutineheader()
			traceback(, , 0, )
			if  {
				tracebackothers()
			}
			.m.traceback = 0
			 = len(.writebuf)
			.writebuf = nil
		})
	}

	if  {
		startTheWorld()
	}
	return 
}

// Tracing of alloc/free/gc.

var tracelock mutex

func tracealloc( unsafe.Pointer,  uintptr,  *_type) {
	lock(&tracelock)
	 := getg()
	.m.traceback = 2
	if  == nil {
		print("tracealloc(", , ", ", hex(), ")\n")
	} else {
		print("tracealloc(", , ", ", hex(), ", ", toRType().string(), ")\n")
	}
	if .m.curg == nil ||  == .m.curg {
		goroutineheader()
		 := getcallerpc()
		 := getcallersp()
		systemstack(func() {
			traceback(, , 0, )
		})
	} else {
		goroutineheader(.m.curg)
		traceback(^uintptr(0), ^uintptr(0), 0, .m.curg)
	}
	print("\n")
	.m.traceback = 0
	unlock(&tracelock)
}

func tracefree( unsafe.Pointer,  uintptr) {
	lock(&tracelock)
	 := getg()
	.m.traceback = 2
	print("tracefree(", , ", ", hex(), ")\n")
	goroutineheader()
	 := getcallerpc()
	 := getcallersp()
	systemstack(func() {
		traceback(, , 0, )
	})
	print("\n")
	.m.traceback = 0
	unlock(&tracelock)
}

func tracegc() {
	lock(&tracelock)
	 := getg()
	.m.traceback = 2
	print("tracegc()\n")
	// running on m->g0 stack; show all non-g0 goroutines
	tracebackothers()
	print("end tracegc\n")
	print("\n")
	.m.traceback = 0
	unlock(&tracelock)
}