Source File
os_linux.go
Belonging Package
runtime
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
)
// sigPerThreadSyscall is the same signal (SIGSETXID) used by glibc for
// per-thread syscalls on Linux. We use it for the same purpose in non-cgo
// binaries.
const sigPerThreadSyscall = _SIGRTMIN + 1
type mOS struct {
// profileTimer holds the ID of the POSIX interval timer for profiling CPU
// usage on this thread.
//
// It is valid when the profileTimerValid field is true. A thread
// creates and manages its own timer, and these fields are read and written
// only by this thread. But because some of the reads on profileTimerValid
// are in signal handling code, this field should be atomic type.
profileTimer int32
profileTimerValid atomic.Bool
// needPerThreadSyscall indicates that a per-thread syscall is required
// for doAllThreadsSyscall.
needPerThreadSyscall atomic.Uint8
}
//go:noescape
func futex( unsafe.Pointer, int32, uint32, , unsafe.Pointer, uint32) int32
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
const (
_FUTEX_PRIVATE_FLAG = 128
_FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG
_FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG
)
// Atomically,
//
// if(*addr == val) sleep
//
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
//
//go:nosplit
func futexsleep( *uint32, uint32, int64) {
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
if < 0 {
futex(unsafe.Pointer(), _FUTEX_WAIT_PRIVATE, , nil, nil, 0)
return
}
var timespec
.setNsec()
futex(unsafe.Pointer(), _FUTEX_WAIT_PRIVATE, , unsafe.Pointer(&), nil, 0)
}
// If any procs are sleeping on addr, wake up at most cnt.
//
//go:nosplit
func futexwakeup( *uint32, uint32) {
:= futex(unsafe.Pointer(), _FUTEX_WAKE_PRIVATE, , nil, nil, 0)
if >= 0 {
return
}
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
systemstack(func() {
print("futexwakeup addr=", , " returned ", , "\n")
})
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
}
func getproccount() int32 {
// This buffer is huge (8 kB) but we are on the system stack
// and there should be plenty of space (64 kB).
// Also this is a leaf, so we're not holding up the memory for long.
// See golang.org/issue/11823.
// The suggested behavior here is to keep trying with ever-larger
// buffers, but we don't have a dynamic memory allocator at the
// moment, so that's a bit tricky and seems like overkill.
const = 64 * 1024
var [ / 8]byte
:= sched_getaffinity(0, unsafe.Sizeof(), &[0])
if < 0 {
return 1
}
:= int32(0)
for , := range [:] {
for != 0 {
+= int32( & 1)
>>= 1
}
}
if == 0 {
= 1
}
return
}
// Clone, the Linux rfork.
const (
_CLONE_VM = 0x100
_CLONE_FS = 0x200
_CLONE_FILES = 0x400
_CLONE_SIGHAND = 0x800
_CLONE_PTRACE = 0x2000
_CLONE_VFORK = 0x4000
_CLONE_PARENT = 0x8000
_CLONE_THREAD = 0x10000
_CLONE_NEWNS = 0x20000
_CLONE_SYSVSEM = 0x40000
_CLONE_SETTLS = 0x80000
_CLONE_PARENT_SETTID = 0x100000
_CLONE_CHILD_CLEARTID = 0x200000
_CLONE_UNTRACED = 0x800000
_CLONE_CHILD_SETTID = 0x1000000
_CLONE_STOPPED = 0x2000000
_CLONE_NEWUTS = 0x4000000
_CLONE_NEWIPC = 0x8000000
// As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these
// flags to be set when creating a thread; attempts to share the other
// five but leave SYSVSEM unshared will fail with -EINVAL.
//
// In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not
// use System V semaphores.
cloneFlags = _CLONE_VM | /* share memory */
_CLONE_FS | /* share cwd, etc */
_CLONE_FILES | /* share fd table */
_CLONE_SIGHAND | /* share sig handler table */
_CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */
_CLONE_THREAD /* revisit - okay for now */
)
//go:noescape
func clone( int32, , , , unsafe.Pointer) int32
// May run with m.p==nil, so write barriers are not allowed.
//
//go:nowritebarrier
func newosproc( *m) {
:= unsafe.Pointer(.g0.stack.hi)
/*
* note: strace gets confused if we use CLONE_PTRACE here.
*/
if false {
print("newosproc stk=", , " m=", , " g=", .g0, " clone=", abi.FuncPCABI0(clone), " id=", .id, " ostk=", &, "\n")
}
// Disable signals during clone, so that the new thread starts
// with signals disabled. It will enable them in minit.
var sigset
sigprocmask(_SIG_SETMASK, &sigset_all, &)
:= retryOnEAGAIN(func() int32 {
:= clone(cloneFlags, , unsafe.Pointer(), unsafe.Pointer(.g0), unsafe.Pointer(abi.FuncPCABI0(mstart)))
// clone returns positive TID, negative errno.
// We don't care about the TID.
if >= 0 {
return 0
}
return -
})
sigprocmask(_SIG_SETMASK, &, nil)
if != 0 {
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", , ")\n")
if == _EAGAIN {
println("runtime: may need to increase max user processes (ulimit -u)")
}
throw("newosproc")
}
}
// Version of newosproc that doesn't require a valid G.
//
//go:nosplit
func newosproc0( uintptr, unsafe.Pointer) {
:= sysAlloc(, &memstats.stacks_sys)
if == nil {
writeErrStr(failallocatestack)
exit(1)
}
:= clone(cloneFlags, unsafe.Pointer(uintptr()+), nil, nil, )
if < 0 {
writeErrStr(failthreadcreate)
exit(1)
}
}
const (
_AT_NULL = 0 // End of vector
_AT_PAGESZ = 6 // System physical page size
_AT_PLATFORM = 15 // string identifying platform
_AT_HWCAP = 16 // hardware capability bit vector
_AT_SECURE = 23 // secure mode boolean
_AT_RANDOM = 25 // introduced in 2.6.29
_AT_HWCAP2 = 26 // hardware capability bit vector 2
)
var procAuxv = []byte("/proc/self/auxv\x00")
var addrspace_vec [1]byte
func mincore( unsafe.Pointer, uintptr, *byte) int32
var auxvreadbuf [128]uintptr
func sysargs( int32, **byte) {
:= + 1
// skip over argv, envp to get to auxv
for argv_index(, ) != nil {
++
}
// skip NULL separator
++
// now argv+n is auxv
:= (*[1 << 28]uintptr)(add(unsafe.Pointer(), uintptr()*goarch.PtrSize))
if := sysauxv([:]); != 0 {
auxv = [: *2 : *2]
return
}
// In some situations we don't get a loader-provided
// auxv, such as when loaded as a library on Android.
// Fall back to /proc/self/auxv.
:= open(&procAuxv[0], 0 /* O_RDONLY */, 0)
if < 0 {
// On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to
// try using mincore to detect the physical page size.
// mincore should return EINVAL when address is not a multiple of system page size.
const = 256 << 10 // size of memory region to allocate
, := mmap(nil, , _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
if != 0 {
return
}
var uintptr
for = 4 << 10; < ; <<= 1 {
:= mincore(unsafe.Pointer(uintptr()+), 1, &addrspace_vec[0])
if == 0 {
physPageSize =
break
}
}
if physPageSize == 0 {
physPageSize =
}
munmap(, )
return
}
= read(, noescape(unsafe.Pointer(&auxvreadbuf[0])), int32(unsafe.Sizeof(auxvreadbuf)))
closefd()
if < 0 {
return
}
// Make sure buf is terminated, even if we didn't read
// the whole file.
auxvreadbuf[len(auxvreadbuf)-2] = _AT_NULL
:= sysauxv(auxvreadbuf[:])
auxv = auxvreadbuf[: *2 : *2]
}
// secureMode holds the value of AT_SECURE passed in the auxiliary vector.
var secureMode bool
func sysauxv( []uintptr) ( int) {
var int
for ; [] != _AT_NULL; += 2 {
, := [], [+1]
switch {
case _AT_RANDOM:
// The kernel provides a pointer to 16-bytes
// worth of random data.
startupRand = (*[16]byte)(unsafe.Pointer())[:]
case _AT_PAGESZ:
physPageSize =
case _AT_SECURE:
secureMode = == 1
}
archauxv(, )
vdsoauxv(, )
}
return / 2
}
var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00")
func getHugePageSize() uintptr {
var [20]byte
:= open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0)
if < 0 {
return 0
}
:= noescape(unsafe.Pointer(&[0]))
:= read(, , int32(len()))
closefd()
if <= 0 {
return 0
}
-- // remove trailing newline
, := atoi(slicebytetostringtmp((*byte)(), int()))
if ! || < 0 {
= 0
}
if &(-1) != 0 {
// v is not a power of 2
return 0
}
return uintptr()
}
func osinit() {
ncpu = getproccount()
physHugePageSize = getHugePageSize()
osArchInit()
}
var urandom_dev = []byte("/dev/urandom\x00")
func readRandom( []byte) int {
:= open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
:= read(, unsafe.Pointer(&[0]), int32(len()))
closefd()
return int()
}
func goenvs() {
goenvs_unix()
}
// Called to do synchronous initialization of Go code built with
// -buildmode=c-archive or -buildmode=c-shared.
// None of the Go runtime is initialized.
//
//go:nosplit
//go:nowritebarrierrec
func libpreinit() {
initsig(true)
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit( *m) {
.gsignal = malg(32 * 1024) // Linux wants >= 2K
.gsignal.m =
}
func gettid() uint32
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, cannot allocate memory.
func minit() {
minitSignals()
// Cgo-created threads and the bootstrap m are missing a
// procid. We need this for asynchronous preemption and it's
// useful in debuggers.
getg().m.procid = uint64(gettid())
}
// Called from dropm to undo the effect of an minit.
//
//go:nosplit
func unminit() {
unminitSignals()
getg().m.procid = 0
}
// Called from exitm, but not from drop, to undo the effect of thread-owned
// resources in minit, semacreate, or elsewhere. Do not take locks after calling this.
func mdestroy( *m) {
}
// #ifdef GOARCH_386
// #define sa_handler k_sa_handler
// #endif
func sigreturn__sigaction()
func sigtramp() // Called via C ABI
func cgoSigtramp()
//go:noescape
func sigaltstack(, *stackt)
//go:noescape
func setitimer( int32, , *itimerval)
//go:noescape
func timer_create( int32, *sigevent, *int32) int32
//go:noescape
func timer_settime( int32, int32, , *itimerspec) int32
//go:noescape
func timer_delete( int32) int32
//go:noescape
func rtsigprocmask( int32, , *sigset, int32)
//go:nosplit
//go:nowritebarrierrec
func sigprocmask( int32, , *sigset) {
rtsigprocmask(, , , int32(unsafe.Sizeof(*)))
}
func raise( uint32)
func raiseproc( uint32)
//go:noescape
func sched_getaffinity(, uintptr, *byte) int32
func osyield()
//go:nosplit
func osyield_no_g() {
osyield()
}
func pipe2( int32) (, int32, int32)
//go:nosplit
func fcntl(, , int32) ( int32, int32) {
, , := syscall.Syscall6(syscall.SYS_FCNTL, uintptr(), uintptr(), uintptr(), 0, 0, 0)
return int32(), int32()
}
const (
_si_max_size = 128
_sigev_max_size = 64
)
//go:nosplit
//go:nowritebarrierrec
func setsig( uint32, uintptr) {
var sigactiont
.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART
sigfillset(&.sa_mask)
// Although Linux manpage says "sa_restorer element is obsolete and
// should not be used". x86_64 kernel requires it. Only use it on
// x86.
if GOARCH == "386" || GOARCH == "amd64" {
.sa_restorer = abi.FuncPCABI0(sigreturn__sigaction)
}
if == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go
if iscgo {
= abi.FuncPCABI0(cgoSigtramp)
} else {
= abi.FuncPCABI0(sigtramp)
}
}
.sa_handler =
sigaction(, &, nil)
}
//go:nosplit
//go:nowritebarrierrec
func setsigstack( uint32) {
var sigactiont
sigaction(, nil, &)
if .sa_flags&_SA_ONSTACK != 0 {
return
}
.sa_flags |= _SA_ONSTACK
sigaction(, &, nil)
}
//go:nosplit
//go:nowritebarrierrec
func getsig( uint32) uintptr {
var sigactiont
sigaction(, nil, &)
return .sa_handler
}
// setSignalstackSP sets the ss_sp field of a stackt.
//
//go:nosplit
func setSignalstackSP( *stackt, uintptr) {
*(*uintptr)(unsafe.Pointer(&.ss_sp)) =
}
//go:nosplit
func ( *sigctxt) ( uint32) {
}
// sysSigaction calls the rt_sigaction system call.
//
//go:nosplit
func sysSigaction( uint32, , *sigactiont) {
if rt_sigaction(uintptr(), , , unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 {
// Workaround for bugs in QEMU user mode emulation.
//
// QEMU turns calls to the sigaction system call into
// calls to the C library sigaction call; the C
// library call rejects attempts to call sigaction for
// SIGCANCEL (32) or SIGSETXID (33).
//
// QEMU rejects calling sigaction on SIGRTMAX (64).
//
// Just ignore the error in these case. There isn't
// anything we can do about it anyhow.
if != 32 && != 33 && != 64 {
// Use system stack to avoid split stack overflow on ppc64/ppc64le.
systemstack(func() {
throw("sigaction failed")
})
}
}
}
// rt_sigaction is implemented in assembly.
//
//go:noescape
func rt_sigaction( uintptr, , *sigactiont, uintptr) int32
func getpid() int
func tgkill(, , int)
// signalM sends a signal to mp.
func signalM( *m, int) {
tgkill(getpid(), int(.procid), )
}
// validSIGPROF compares this signal delivery's code against the signal sources
// that the profiler uses, returning whether the delivery should be processed.
// To be processed, a signal delivery from a known profiling mechanism should
// correspond to the best profiling mechanism available to this thread. Signals
// from other sources are always considered valid.
//
//go:nosplit
func validSIGPROF( *m, *sigctxt) bool {
:= int32(.sigcode())
:= == _SI_KERNEL
:= == _SI_TIMER
if !( || ) {
// The signal doesn't correspond to a profiling mechanism that the
// runtime enables itself. There's no reason to process it, but there's
// no reason to ignore it either.
return true
}
if == nil {
// Since we don't have an M, we can't check if there's an active
// per-thread timer for this thread. We don't know how long this thread
// has been around, and if it happened to interact with the Go scheduler
// at a time when profiling was active (causing it to have a per-thread
// timer). But it may have never interacted with the Go scheduler, or
// never while profiling was active. To avoid double-counting, process
// only signals from setitimer.
//
// When a custom cgo traceback function has been registered (on
// platforms that support runtime.SetCgoTraceback), SIGPROF signals
// delivered to a thread that cannot find a matching M do this check in
// the assembly implementations of runtime.cgoSigtramp.
return
}
// Having an M means the thread interacts with the Go scheduler, and we can
// check whether there's an active per-thread timer for this thread.
if .profileTimerValid.Load() {
// If this M has its own per-thread CPU profiling interval timer, we
// should track the SIGPROF signals that come from that timer (for
// accurate reporting of its CPU usage; see issue 35057) and ignore any
// that it gets from the process-wide setitimer (to not over-count its
// CPU consumption).
return
}
// No active per-thread timer means the only valid profiler is setitimer.
return
}
func setProcessCPUProfiler( int32) {
setProcessCPUProfilerTimer()
}
func setThreadCPUProfiler( int32) {
:= getg().m
.profilehz =
// destroy any active timer
if .profileTimerValid.Load() {
:= .profileTimer
.profileTimerValid.Store(false)
.profileTimer = 0
:= timer_delete()
if != 0 {
print("runtime: failed to disable profiling timer; timer_delete(", , ") errno=", -, "\n")
throw("timer_delete")
}
}
if == 0 {
// If the goal was to disable profiling for this thread, then the job's done.
return
}
// The period of the timer should be 1/Hz. For every "1/Hz" of additional
// work, the user should expect one additional sample in the profile.
//
// But to scale down to very small amounts of application work, to observe
// even CPU usage of "one tenth" of the requested period, set the initial
// timing delay in a different way: So that "one tenth" of a period of CPU
// spend shows up as a 10% chance of one sample (for an expected value of
// 0.1 samples), and so that "two and six tenths" periods of CPU spend show
// up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an
// expected value of 2.6). Set the initial delay to a value in the unifom
// random distribution between 0 and the desired period. And because "0"
// means "disable timer", add 1 so the half-open interval [0,period) turns
// into (0,period].
//
// Otherwise, this would show up as a bias away from short-lived threads and
// from threads that are only occasionally active: for example, when the
// garbage collector runs on a mostly-idle system, the additional threads it
// activates may do a couple milliseconds of GC-related work and nothing
// else in the few seconds that the profiler observes.
:= new(itimerspec)
.it_value.setNsec(1 + int64(cheaprandn(uint32(1e9/))))
.it_interval.setNsec(1e9 / int64())
var int32
var sigevent
.notify = _SIGEV_THREAD_ID
.signo = _SIGPROF
.sigev_notify_thread_id = int32(.procid)
:= timer_create(_CLOCK_THREAD_CPUTIME_ID, &, &)
if != 0 {
// If we cannot create a timer for this M, leave profileTimerValid false
// to fall back to the process-wide setitimer profiler.
return
}
= timer_settime(, 0, , nil)
if != 0 {
print("runtime: failed to configure profiling timer; timer_settime(", ,
", 0, {interval: {",
.it_interval.tv_sec, "s + ", .it_interval.tv_nsec, "ns} value: {",
.it_value.tv_sec, "s + ", .it_value.tv_nsec, "ns}}, nil) errno=", -, "\n")
throw("timer_settime")
}
.profileTimer =
.profileTimerValid.Store(true)
}
// perThreadSyscallArgs contains the system call number, arguments, and
// expected return values for a system call to be executed on all threads.
type perThreadSyscallArgs struct {
trap uintptr
a1 uintptr
a2 uintptr
a3 uintptr
a4 uintptr
a5 uintptr
a6 uintptr
r1 uintptr
r2 uintptr
}
// perThreadSyscall is the system call to execute for the ongoing
// doAllThreadsSyscall.
//
// perThreadSyscall may only be written while mp.needPerThreadSyscall == 0 on
// all Ms.
var perThreadSyscall perThreadSyscallArgs
// syscall_runtime_doAllThreadsSyscall and executes a specified system call on
// all Ms.
//
// The system call is expected to succeed and return the same value on every
// thread. If any threads do not match, the runtime throws.
//
//go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall
//go:uintptrescapes
func syscall_runtime_doAllThreadsSyscall(, , , , , , uintptr) (, , uintptr) {
if iscgo {
// In cgo, we are not aware of threads created in C, so this approach will not work.
panic("doAllThreadsSyscall not supported with cgo enabled")
}
// STW to guarantee that user goroutines see an atomic change to thread
// state. Without STW, goroutines could migrate Ms while change is in
// progress and e.g., see state old -> new -> old -> new.
//
// N.B. Internally, this function does not depend on STW to
// successfully change every thread. It is only needed for user
// expectations, per above.
:= stopTheWorld(stwAllThreadsSyscall)
// This function depends on several properties:
//
// 1. All OS threads that already exist are associated with an M in
// allm. i.e., we won't miss any pre-existing threads.
// 2. All Ms listed in allm will eventually have an OS thread exist.
// i.e., they will set procid and be able to receive signals.
// 3. OS threads created after we read allm will clone from a thread
// that has executed the system call. i.e., they inherit the
// modified state.
//
// We achieve these through different mechanisms:
//
// 1. Addition of new Ms to allm in allocm happens before clone of its
// OS thread later in newm.
// 2. newm does acquirem to avoid being preempted, ensuring that new Ms
// created in allocm will eventually reach OS thread clone later in
// newm.
// 3. We take allocmLock for write here to prevent allocation of new Ms
// while this function runs. Per (1), this prevents clone of OS
// threads that are not yet in allm.
allocmLock.lock()
// Disable preemption, preventing us from changing Ms, as we handle
// this M specially.
//
// N.B. STW and lock() above do this as well, this is added for extra
// clarity.
acquirem()
// N.B. allocmLock also prevents concurrent execution of this function,
// serializing use of perThreadSyscall, mp.needPerThreadSyscall, and
// ensuring all threads execute system calls from multiple calls in the
// same order.
, , := syscall.Syscall6(, , , , , , )
if GOARCH == "ppc64" || GOARCH == "ppc64le" {
// TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2.
= 0
}
if != 0 {
releasem(getg().m)
allocmLock.unlock()
startTheWorld()
return , ,
}
perThreadSyscall = perThreadSyscallArgs{
trap: ,
a1: ,
a2: ,
a3: ,
a4: ,
a5: ,
a6: ,
r1: ,
r2: ,
}
// Wait for all threads to start.
//
// As described above, some Ms have been added to allm prior to
// allocmLock, but not yet completed OS clone and set procid.
//
// At minimum we must wait for a thread to set procid before we can
// send it a signal.
//
// We take this one step further and wait for all threads to start
// before sending any signals. This prevents system calls from getting
// applied twice: once in the parent and once in the child, like so:
//
// A B C
// add C to allm
// doAllThreadsSyscall
// allocmLock.lock()
// signal B
// <receive signal>
// execute syscall
// <signal return>
// clone C
// <thread start>
// set procid
// signal C
// <receive signal>
// execute syscall
// <signal return>
//
// In this case, thread C inherited the syscall-modified state from
// thread B and did not need to execute the syscall, but did anyway
// because doAllThreadsSyscall could not be sure whether it was
// required.
//
// Some system calls may not be idempotent, so we ensure each thread
// executes the system call exactly once.
for := allm; != nil; = .alllink {
for atomic.Load64(&.procid) == 0 {
// Thread is starting.
osyield()
}
}
// Signal every other thread, where they will execute perThreadSyscall
// from the signal handler.
:= getg()
:= .m.procid
for := allm; != nil; = .alllink {
if atomic.Load64(&.procid) == {
// Our thread already performed the syscall.
continue
}
.needPerThreadSyscall.Store(1)
signalM(, sigPerThreadSyscall)
}
// Wait for all threads to complete.
for := allm; != nil; = .alllink {
if .procid == {
continue
}
for .needPerThreadSyscall.Load() != 0 {
osyield()
}
}
perThreadSyscall = perThreadSyscallArgs{}
releasem(getg().m)
allocmLock.unlock()
startTheWorld()
return , ,
}
// runPerThreadSyscall runs perThreadSyscall for this M if required.
//
// This function throws if the system call returns with anything other than the
// expected values.
//
//go:nosplit
func runPerThreadSyscall() {
:= getg()
if .m.needPerThreadSyscall.Load() == 0 {
return
}
:= perThreadSyscall
, , := syscall.Syscall6(.trap, .a1, .a2, .a3, .a4, .a5, .a6)
if GOARCH == "ppc64" || GOARCH == "ppc64le" {
// TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2.
= 0
}
if != 0 || != .r1 || != .r2 {
print("trap:", .trap, ", a123456=[", .a1, ",", .a2, ",", .a3, ",", .a4, ",", .a5, ",", .a6, "]\n")
print("results: got {r1=", , ",r2=", , ",errno=", , "}, want {r1=", .r1, ",r2=", .r2, ",errno=0}\n")
fatal("AllThreadsSyscall6 results differ between threads; runtime corrupted")
}
.m.needPerThreadSyscall.Store(0)
}
const (
_SI_USER = 0
_SI_TKILL = -6
)
// sigFromUser reports whether the signal was sent because of a call
// to kill or tgkill.
//
//go:nosplit
func ( *sigctxt) () bool {
:= int32(.sigcode())
return == _SI_USER || == _SI_TKILL
}
//go:nosplit
func mprotect( unsafe.Pointer, uintptr, int32) ( int32, int32) {
, , := syscall.Syscall6(syscall.SYS_MPROTECT, uintptr(), , uintptr(), 0, 0, 0)
return int32(), int32()
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |