Source File
signal_unix.go
Belonging Package
runtime
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build unix
package runtime
import (
)
// sigTabT is the type of an entry in the global sigtable array.
// sigtable is inherently system dependent, and appears in OS-specific files,
// but sigTabT is the same for all Unixy systems.
// The sigtable array is indexed by a system signal number to get the flags
// and printable name of each signal.
type sigTabT struct {
flags int32
name string
}
//go:linkname os_sigpipe os.sigpipe
func os_sigpipe() {
systemstack(sigpipe)
}
func signame( uint32) string {
if >= uint32(len(sigtable)) {
return ""
}
return sigtable[].name
}
const (
_SIG_DFL uintptr = 0
_SIG_IGN uintptr = 1
)
// sigPreempt is the signal used for non-cooperative preemption.
//
// There's no good way to choose this signal, but there are some
// heuristics:
//
// 1. It should be a signal that's passed-through by debuggers by
// default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO,
// SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals.
//
// 2. It shouldn't be used internally by libc in mixed Go/C binaries
// because libc may assume it's the only thing that can handle these
// signals. For example SIGCANCEL or SIGSETXID.
//
// 3. It should be a signal that can happen spuriously without
// consequences. For example, SIGALRM is a bad choice because the
// signal handler can't tell if it was caused by the real process
// alarm or not (arguably this means the signal is broken, but I
// digress). SIGUSR1 and SIGUSR2 are also bad because those are often
// used in meaningful ways by applications.
//
// 4. We need to deal with platforms without real-time signals (like
// macOS), so those are out.
//
// We use SIGURG because it meets all of these criteria, is extremely
// unlikely to be used by an application for its "real" meaning (both
// because out-of-band data is basically unused and because SIGURG
// doesn't report which socket has the condition, making it pretty
// useless), and even if it is, the application has to be ready for
// spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more
// likely to be used for real.
const sigPreempt = _SIGURG
// Stores the signal handlers registered before Go installed its own.
// These signal handlers will be invoked in cases where Go doesn't want to
// handle a particular signal (e.g., signal occurred on a non-Go thread).
// See sigfwdgo for more information on when the signals are forwarded.
//
// This is read by the signal handler; accesses should use
// atomic.Loaduintptr and atomic.Storeuintptr.
var fwdSig [_NSIG]uintptr
// handlingSig is indexed by signal number and is non-zero if we are
// currently handling the signal. Or, to put it another way, whether
// the signal handler is currently set to the Go signal handler or not.
// This is uint32 rather than bool so that we can use atomic instructions.
var handlingSig [_NSIG]uint32
// channels for synchronizing signal mask updates with the signal mask
// thread
var (
disableSigChan chan uint32
enableSigChan chan uint32
maskUpdatedChan chan struct{}
)
func init() {
// _NSIG is the number of signals on this operating system.
// sigtable should describe what to do for all the possible signals.
if len(sigtable) != _NSIG {
print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
throw("bad sigtable len")
}
}
var signalsOK bool
// Initialize signals.
// Called by libpreinit so runtime may not be initialized.
//
//go:nosplit
//go:nowritebarrierrec
func initsig( bool) {
if ! {
// It's now OK for signal handlers to run.
signalsOK = true
}
// For c-archive/c-shared this is called by libpreinit with
// preinit == true.
if (isarchive || islibrary) && ! {
return
}
for := uint32(0); < _NSIG; ++ {
:= &sigtable[]
if .flags == 0 || .flags&_SigDefault != 0 {
continue
}
// We don't need to use atomic operations here because
// there shouldn't be any other goroutines running yet.
fwdSig[] = getsig()
if !sigInstallGoHandler() {
// Even if we are not installing a signal handler,
// set SA_ONSTACK if necessary.
if fwdSig[] != _SIG_DFL && fwdSig[] != _SIG_IGN {
setsigstack()
} else if fwdSig[] == _SIG_IGN {
sigInitIgnored()
}
continue
}
handlingSig[] = 1
setsig(, abi.FuncPCABIInternal(sighandler))
}
}
//go:nosplit
//go:nowritebarrierrec
func sigInstallGoHandler( uint32) bool {
// For some signals, we respect an inherited SIG_IGN handler
// rather than insist on installing our own default handler.
// Even these signals can be fetched using the os/signal package.
switch {
case _SIGHUP, _SIGINT:
if atomic.Loaduintptr(&fwdSig[]) == _SIG_IGN {
return false
}
}
if (GOOS == "linux" || GOOS == "android") && !iscgo && == sigPerThreadSyscall {
// sigPerThreadSyscall is the same signal used by glibc for
// per-thread syscalls on Linux. We use it for the same purpose
// in non-cgo binaries.
return true
}
:= &sigtable[]
if .flags&_SigSetStack != 0 {
return false
}
// When built using c-archive or c-shared, only install signal
// handlers for synchronous signals and SIGPIPE and sigPreempt.
if (isarchive || islibrary) && .flags&_SigPanic == 0 && != _SIGPIPE && != sigPreempt {
return false
}
return true
}
// sigenable enables the Go signal handler to catch the signal sig.
// It is only called while holding the os/signal.handlers lock,
// via os/signal.enableSignal and signal_enable.
func sigenable( uint32) {
if >= uint32(len(sigtable)) {
return
}
// SIGPROF is handled specially for profiling.
if == _SIGPROF {
return
}
:= &sigtable[]
if .flags&_SigNotify != 0 {
ensureSigM()
enableSigChan <-
<-maskUpdatedChan
if atomic.Cas(&handlingSig[], 0, 1) {
atomic.Storeuintptr(&fwdSig[], getsig())
setsig(, abi.FuncPCABIInternal(sighandler))
}
}
}
// sigdisable disables the Go signal handler for the signal sig.
// It is only called while holding the os/signal.handlers lock,
// via os/signal.disableSignal and signal_disable.
func sigdisable( uint32) {
if >= uint32(len(sigtable)) {
return
}
// SIGPROF is handled specially for profiling.
if == _SIGPROF {
return
}
:= &sigtable[]
if .flags&_SigNotify != 0 {
ensureSigM()
disableSigChan <-
<-maskUpdatedChan
// If initsig does not install a signal handler for a
// signal, then to go back to the state before Notify
// we should remove the one we installed.
if !sigInstallGoHandler() {
atomic.Store(&handlingSig[], 0)
setsig(, atomic.Loaduintptr(&fwdSig[]))
}
}
}
// sigignore ignores the signal sig.
// It is only called while holding the os/signal.handlers lock,
// via os/signal.ignoreSignal and signal_ignore.
func sigignore( uint32) {
if >= uint32(len(sigtable)) {
return
}
// SIGPROF is handled specially for profiling.
if == _SIGPROF {
return
}
:= &sigtable[]
if .flags&_SigNotify != 0 {
atomic.Store(&handlingSig[], 0)
setsig(, _SIG_IGN)
}
}
// clearSignalHandlers clears all signal handlers that are not ignored
// back to the default. This is called by the child after a fork, so that
// we can enable the signal mask for the exec without worrying about
// running a signal handler in the child.
//
//go:nosplit
//go:nowritebarrierrec
func clearSignalHandlers() {
for := uint32(0); < _NSIG; ++ {
if atomic.Load(&handlingSig[]) != 0 {
setsig(, _SIG_DFL)
}
}
}
// setProcessCPUProfilerTimer is called when the profiling timer changes.
// It is called with prof.signalLock held. hz is the new timer, and is 0 if
// profiling is being disabled. Enable or disable the signal as
// required for -buildmode=c-archive.
func setProcessCPUProfilerTimer( int32) {
if != 0 {
// Enable the Go signal handler if not enabled.
if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
:= getsig(_SIGPROF)
// If no signal handler was installed before, then we record
// _SIG_IGN here. When we turn off profiling (below) we'll start
// ignoring SIGPROF signals. We do this, rather than change
// to SIG_DFL, because there may be a pending SIGPROF
// signal that has not yet been delivered to some other thread.
// If we change to SIG_DFL when turning off profiling, the
// program will crash when that SIGPROF is delivered. We assume
// that programs that use profiling don't want to crash on a
// stray SIGPROF. See issue 19320.
// We do the change here instead of when turning off profiling,
// because there we may race with a signal handler running
// concurrently, in particular, sigfwdgo may observe _SIG_DFL and
// die. See issue 43828.
if == _SIG_DFL {
= _SIG_IGN
}
atomic.Storeuintptr(&fwdSig[_SIGPROF], )
setsig(_SIGPROF, abi.FuncPCABIInternal(sighandler))
}
var itimerval
.it_interval.tv_sec = 0
.it_interval.set_usec(1000000 / )
.it_value = .it_interval
setitimer(_ITIMER_PROF, &, nil)
} else {
setitimer(_ITIMER_PROF, &itimerval{}, nil)
// If the Go signal handler should be disabled by default,
// switch back to the signal handler that was installed
// when we enabled profiling. We don't try to handle the case
// of a program that changes the SIGPROF handler while Go
// profiling is enabled.
if !sigInstallGoHandler(_SIGPROF) {
if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
:= atomic.Loaduintptr(&fwdSig[_SIGPROF])
setsig(_SIGPROF, )
}
}
}
}
// setThreadCPUProfilerHz makes any thread-specific changes required to
// implement profiling at a rate of hz.
// No changes required on Unix systems when using setitimer.
func setThreadCPUProfilerHz( int32) {
getg().m.profilehz =
}
func sigpipe() {
if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) {
return
}
dieFromSignal(_SIGPIPE)
}
// doSigPreempt handles a preemption signal on gp.
func doSigPreempt( *g, *sigctxt) {
// Check if this G wants to be preempted and is safe to
// preempt.
if wantAsyncPreempt() {
if , := isAsyncSafePoint(, .sigpc(), .sigsp(), .siglr()); {
// Adjust the PC and inject a call to asyncPreempt.
.pushCall(abi.FuncPCABI0(asyncPreempt), )
}
}
// Acknowledge the preemption.
.m.preemptGen.Add(1)
.m.signalPending.Store(0)
if GOOS == "darwin" || GOOS == "ios" {
pendingPreemptSignals.Add(-1)
}
}
const preemptMSupported = true
// preemptM sends a preemption request to mp. This request may be
// handled asynchronously and may be coalesced with other requests to
// the M. When the request is received, if the running G or P are
// marked for preemption and the goroutine is at an asynchronous
// safe-point, it will preempt the goroutine. It always atomically
// increments mp.preemptGen after handling a preemption request.
func preemptM( *m) {
// On Darwin, don't try to preempt threads during exec.
// Issue #41702.
if GOOS == "darwin" || GOOS == "ios" {
execLock.rlock()
}
if .signalPending.CompareAndSwap(0, 1) {
if GOOS == "darwin" || GOOS == "ios" {
pendingPreemptSignals.Add(1)
}
// If multiple threads are preempting the same M, it may send many
// signals to the same M such that it hardly make progress, causing
// live-lock problem. Apparently this could happen on darwin. See
// issue #37741.
// Only send a signal if there isn't already one pending.
signalM(, sigPreempt)
}
if GOOS == "darwin" || GOOS == "ios" {
execLock.runlock()
}
}
// sigFetchG fetches the value of G safely when running in a signal handler.
// On some architectures, the g value may be clobbered when running in a VDSO.
// See issue #32912.
//
//go:nosplit
func sigFetchG( *sigctxt) *g {
switch GOARCH {
case "arm", "arm64", "loong64", "ppc64", "ppc64le", "riscv64", "s390x":
if !iscgo && inVDSOPage(.sigpc()) {
// When using cgo, we save the g on TLS and load it from there
// in sigtramp. Just use that.
// Otherwise, before making a VDSO call we save the g to the
// bottom of the signal stack. Fetch from there.
// TODO: in efence mode, stack is sysAlloc'd, so this wouldn't
// work.
:= getcallersp()
:= spanOf()
if != nil && .state.get() == mSpanManual && .base() < && < .limit {
:= *(**g)(unsafe.Pointer(.base()))
return
}
return nil
}
}
return getg()
}
// sigtrampgo is called from the signal handler function, sigtramp,
// written in assembly code.
// This is called by the signal handler, and the world may be stopped.
//
// It must be nosplit because getg() is still the G that was running
// (if any) when the signal was delivered, but it's (usually) called
// on the gsignal stack. Until this switches the G to gsignal, the
// stack bounds check won't work.
//
//go:nosplit
//go:nowritebarrierrec
func sigtrampgo( uint32, *siginfo, unsafe.Pointer) {
if sigfwdgo(, , ) {
return
}
:= &sigctxt{, }
:= sigFetchG()
setg()
if == nil || (.m != nil && .m.isExtraInC) {
if == _SIGPROF {
// Some platforms (Linux) have per-thread timers, which we use in
// combination with the process-wide timer. Avoid double-counting.
if validSIGPROF(nil, ) {
sigprofNonGoPC(.sigpc())
}
return
}
if == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
// This is probably a signal from preemptM sent
// while executing Go code but received while
// executing non-Go code.
// We got past sigfwdgo, so we know that there is
// no non-Go signal handler for sigPreempt.
// The default behavior for sigPreempt is to ignore
// the signal, so badsignal will be a no-op anyway.
if GOOS == "darwin" || GOOS == "ios" {
pendingPreemptSignals.Add(-1)
}
return
}
.fixsigcode()
// Set g to nil here and badsignal will use g0 by needm.
// TODO: reuse the current m here by using the gsignal and adjustSignalStack,
// since the current g maybe a normal goroutine and actually running on the signal stack,
// it may hit stack split that is not expected here.
if != nil {
setg(nil)
}
badsignal(uintptr(), )
// Restore g
if != nil {
setg()
}
return
}
setg(.m.gsignal)
// If some non-Go code called sigaltstack, adjust.
var gsignalStack
:= adjustSignalStack(, .m, &)
if {
.m.gsignal.stktopsp = getcallersp()
}
if .stackguard0 == stackFork {
signalDuringFork()
}
.fixsigcode()
sighandler(, , , )
setg()
if {
restoreGsignalStack(&)
}
}
// If the signal handler receives a SIGPROF signal on a non-Go thread,
// it tries to collect a traceback into sigprofCallers.
// sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
var sigprofCallers cgoCallers
var sigprofCallersUse uint32
// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
// and the signal handler collected a stack trace in sigprofCallers.
// When this is called, sigprofCallersUse will be non-zero.
// g is nil, and what we can do is very limited.
//
// It is called from the signal handling functions written in assembly code that
// are active for cgo programs, cgoSigtramp and sigprofNonGoWrapper, which have
// not verified that the SIGPROF delivery corresponds to the best available
// profiling source for this thread.
//
//go:nosplit
//go:nowritebarrierrec
func sigprofNonGo( uint32, *siginfo, unsafe.Pointer) {
if prof.hz.Load() != 0 {
:= &sigctxt{, }
// Some platforms (Linux) have per-thread timers, which we use in
// combination with the process-wide timer. Avoid double-counting.
if validSIGPROF(nil, ) {
:= 0
for < len(sigprofCallers) && sigprofCallers[] != 0 {
++
}
cpuprof.addNonGo(sigprofCallers[:])
}
}
atomic.Store(&sigprofCallersUse, 0)
}
// sigprofNonGoPC is called when a profiling signal arrived on a
// non-Go thread and we have a single PC value, not a stack trace.
// g is nil, and what we can do is very limited.
//
//go:nosplit
//go:nowritebarrierrec
func sigprofNonGoPC( uintptr) {
if prof.hz.Load() != 0 {
:= []uintptr{
,
abi.FuncPCABIInternal(_ExternalCode) + sys.PCQuantum,
}
cpuprof.addNonGo()
}
}
// adjustSignalStack adjusts the current stack guard based on the
// stack pointer that is actually in use while handling a signal.
// We do this in case some non-Go code called sigaltstack.
// This reports whether the stack was adjusted, and if so stores the old
// signal stack in *gsigstack.
//
//go:nosplit
func adjustSignalStack( uint32, *m, *gsignalStack) bool {
:= uintptr(unsafe.Pointer(&))
if >= .gsignal.stack.lo && < .gsignal.stack.hi {
return false
}
var stackt
sigaltstack(nil, &)
:= uintptr(unsafe.Pointer(.ss_sp))
if .ss_flags&_SS_DISABLE == 0 && >= && < +.ss_size {
setGsignalStack(&, )
return true
}
if >= .g0.stack.lo && < .g0.stack.hi {
// The signal was delivered on the g0 stack.
// This can happen when linked with C code
// using the thread sanitizer, which collects
// signals then delivers them itself by calling
// the signal handler directly when C code,
// including C code called via cgo, calls a
// TSAN-intercepted function such as malloc.
//
// We check this condition last as g0.stack.lo
// may be not very accurate (see mstart).
:= stackt{ss_size: .g0.stack.hi - .g0.stack.lo}
setSignalstackSP(&, .g0.stack.lo)
setGsignalStack(&, )
return true
}
// sp is not within gsignal stack, g0 stack, or sigaltstack. Bad.
setg(nil)
needm(true)
if .ss_flags&_SS_DISABLE != 0 {
noSignalStack()
} else {
sigNotOnStack(, , )
}
dropm()
return false
}
// crashing is the number of m's we have waited for when implementing
// GOTRACEBACK=crash when a signal is received.
var crashing atomic.Int32
// testSigtrap and testSigusr1 are used by the runtime tests. If
// non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the
// normal behavior on this signal is suppressed.
var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
var testSigusr1 func(gp *g) bool
// sighandler is invoked when a signal occurs. The global g will be
// set to a gsignal goroutine and we will be running on the alternate
// signal stack. The parameter gp will be the value of the global g
// when the signal occurred. The sig, info, and ctxt parameters are
// from the system signal handler: they are the parameters passed when
// the SA is passed to the sigaction system call.
//
// The garbage collector may have stopped the world, so write barriers
// are not allowed.
//
//go:nowritebarrierrec
func sighandler( uint32, *siginfo, unsafe.Pointer, *g) {
// The g executing the signal handler. This is almost always
// mp.gsignal. See delayedSignal for an exception.
:= getg()
:= .m
:= &sigctxt{, }
// Cgo TSAN (not the Go race detector) intercepts signals and calls the
// signal handler at a later time. When the signal handler is called, the
// memory may have changed, but the signal context remains old. The
// unmatched signal context and memory makes it unsafe to unwind or inspect
// the stack. So we ignore delayed non-fatal signals that will cause a stack
// inspection (profiling signal and preemption signal).
// cgo_yield is only non-nil for TSAN, and is specifically used to trigger
// signal delivery. We use that as an indicator of delayed signals.
// For delayed signals, the handler is called on the g0 stack (see
// adjustSignalStack).
:= *cgo_yield != nil && != nil && .stack == .g0.stack
if == _SIGPROF {
// Some platforms (Linux) have per-thread timers, which we use in
// combination with the process-wide timer. Avoid double-counting.
if ! && validSIGPROF(, ) {
sigprof(.sigpc(), .sigsp(), .siglr(), , )
}
return
}
if == _SIGTRAP && testSigtrap != nil && testSigtrap(, (*sigctxt)(noescape(unsafe.Pointer())), ) {
return
}
if == _SIGUSR1 && testSigusr1 != nil && testSigusr1() {
return
}
if (GOOS == "linux" || GOOS == "android") && == sigPerThreadSyscall {
// sigPerThreadSyscall is the same signal used by glibc for
// per-thread syscalls on Linux. We use it for the same purpose
// in non-cgo binaries. Since this signal is not _SigNotify,
// there is nothing more to do once we run the syscall.
runPerThreadSyscall()
return
}
if == sigPreempt && debug.asyncpreemptoff == 0 && ! {
// Might be a preemption signal.
doSigPreempt(, )
// Even if this was definitely a preemption signal, it
// may have been coalesced with another signal, so we
// still let it through to the application.
}
:= int32(_SigThrow)
if < uint32(len(sigtable)) {
= sigtable[].flags
}
if !.sigFromUser() && &_SigPanic != 0 && (.throwsplit || != .curg) {
// We can't safely sigpanic because it may grow the
// stack. Abort in the signal handler instead.
//
// Also don't inject a sigpanic if we are not on a
// user G stack. Either we're in the runtime, or we're
// running C code. Either way we cannot recover.
= _SigThrow
}
if isAbortPC(.sigpc()) {
// On many architectures, the abort function just
// causes a memory fault. Don't turn that into a panic.
= _SigThrow
}
if !.sigFromUser() && &_SigPanic != 0 {
// The signal is going to cause a panic.
// Arrange the stack so that it looks like the point
// where the signal occurred made a call to the
// function sigpanic. Then set the PC to sigpanic.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
.sig =
.sigcode0 = uintptr(.sigcode())
.sigcode1 = .fault()
.sigpc = .sigpc()
.preparePanic(, )
return
}
if .sigFromUser() || &_SigNotify != 0 {
if sigsend() {
return
}
}
if .sigFromUser() && signal_ignored() {
return
}
if &_SigKill != 0 {
dieFromSignal()
}
// _SigThrow means that we should exit now.
// If we get here with _SigPanic, it means that the signal
// was sent to us by a program (c.sigFromUser() is true);
// in that case, if we didn't handle it in sigsend, we exit now.
if &(_SigThrow|_SigPanic) == 0 {
return
}
.throwing = throwTypeRuntime
.caughtsig.set()
if crashing.Load() == 0 {
startpanic_m()
}
= fatalsignal(, , , )
, , := gotraceback()
if > 0 {
goroutineheader()
tracebacktrap(.sigpc(), .sigsp(), .siglr(), )
if crashing.Load() > 0 && != .curg && .curg != nil && readgstatus(.curg)&^_Gscan == _Grunning {
// tracebackothers on original m skipped this one; trace it now.
goroutineheader(.curg)
traceback(^uintptr(0), ^uintptr(0), 0, .curg)
} else if crashing.Load() == 0 {
tracebackothers()
print("\n")
}
dumpregs()
}
if {
var uint32 = 5000
var uint32 = 2000 *
:= false
if crashing.CompareAndSwap(0, 1) {
= true
} else {
crashing.Add(1)
}
if crashing.Load() < mcount()-int32(extraMLength.Load()) {
// There are other m's that need to dump their stacks.
// Relay SIGQUIT to the next m by sending it to the current process.
// All m's that have already received SIGQUIT have signal masks blocking
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
// The first m will wait until all ms received the SIGQUIT, then crash/exit.
// Just in case the relaying gets botched, each m involved in
// the relay sleeps for 5 seconds and then does the crash/exit itself.
// The faulting m is crashing first so it is the faulting thread in the core dump (see issue #63277):
// in expected operation, the first m will wait until the last m has received the SIGQUIT,
// and then run crash/exit and the process is gone.
// However, if it spends more than 10 seconds to send SIGQUIT to all ms,
// any of ms may crash/exit the process after waiting for 10 seconds.
print("\n-----\n\n")
raiseproc(_SIGQUIT)
}
if {
// Sleep for short intervals so that we can crash quickly after all ms have received SIGQUIT.
// Reset the timer whenever we see more ms received SIGQUIT
// to make it have enough time to crash (see issue #64752).
:=
:= crashing.Load()
for > 0 && (crashing.Load() < mcount()-int32(extraMLength.Load())) {
usleep()
-=
if := crashing.Load(); > {
// We make progress, so reset the watchdog timeout
=
=
}
}
} else {
:= int32(0)
:= crashing.Load()
for > {
=
usleep()
= crashing.Load()
}
}
printDebugLog()
crash()
}
printDebugLog()
exit(2)
}
func fatalsignal( uint32, *sigctxt, *g, *m) *g {
if < uint32(len(sigtable)) {
print(sigtable[].name, "\n")
} else {
print("Signal ", , "\n")
}
if isSecureMode() {
exit(2)
}
print("PC=", hex(.sigpc()), " m=", .id, " sigcode=", .sigcode())
if == _SIGSEGV || == _SIGBUS {
print(" addr=", hex(.fault()))
}
print("\n")
if .incgo && == .g0 && .curg != nil {
print("signal arrived during cgo execution\n")
// Switch to curg so that we get a traceback of the Go code
// leading up to the cgocall, which switched from curg to g0.
= .curg
}
if == _SIGILL || == _SIGFPE {
// It would be nice to know how long the instruction is.
// Unfortunately, that's complicated to do in general (mostly for x86
// and s930x, but other archs have non-standard instruction lengths also).
// Opt to print 16 bytes, which covers most instructions.
const = 16
:= uintptr()
// We have to be careful, though. If we're near the end of
// a page and the following page isn't mapped, we could
// segfault. So make sure we don't straddle a page (even though
// that could lead to printing an incomplete instruction).
// We're assuming here we can read at least the page containing the PC.
// I suppose it is possible that the page is mapped executable but not readable?
:= .sigpc()
if > physPageSize-%physPageSize {
= physPageSize - %physPageSize
}
print("instruction bytes:")
:= (*[]byte)(unsafe.Pointer())
for := uintptr(0); < ; ++ {
print(" ", hex([]))
}
println()
}
print("\n")
return
}
// sigpanic turns a synchronous signal into a run-time panic.
// If the signal handler sees a synchronous panic, it arranges the
// stack to look like the function where the signal occurred called
// sigpanic, sets the signal's PC value to sigpanic, and returns from
// the signal handler. The effect is that the program will act as
// though the function that got the signal simply called sigpanic
// instead.
//
// This must NOT be nosplit because the linker doesn't know where
// sigpanic calls can be injected.
//
// The signal handler must not inject a call to sigpanic if
// getg().throwsplit, since sigpanic may need to grow the stack.
//
// This is exported via linkname to assembly in runtime/cgo.
//
//go:linkname sigpanic
func sigpanic() {
:= getg()
if !canpanic() {
throw("unexpected signal during runtime execution")
}
switch .sig {
case _SIGBUS:
if .sigcode0 == _BUS_ADRERR && .sigcode1 < 0x1000 {
panicmem()
}
// Support runtime/debug.SetPanicOnFault.
if .paniconfault {
panicmemAddr(.sigcode1)
}
print("unexpected fault address ", hex(.sigcode1), "\n")
throw("fault")
case _SIGSEGV:
if (.sigcode0 == 0 || .sigcode0 == _SEGV_MAPERR || .sigcode0 == _SEGV_ACCERR) && .sigcode1 < 0x1000 {
panicmem()
}
// Support runtime/debug.SetPanicOnFault.
if .paniconfault {
panicmemAddr(.sigcode1)
}
if inUserArenaChunk(.sigcode1) {
// We could check that the arena chunk is explicitly set to fault,
// but the fact that we faulted on accessing it is enough to prove
// that it is.
print("accessed data from freed user arena ", hex(.sigcode1), "\n")
} else {
print("unexpected fault address ", hex(.sigcode1), "\n")
}
throw("fault")
case _SIGFPE:
switch .sigcode0 {
case _FPE_INTDIV:
panicdivide()
case _FPE_INTOVF:
panicoverflow()
}
panicfloat()
}
if .sig >= uint32(len(sigtable)) {
// can't happen: we looked up gp.sig in sigtable to decide to call sigpanic
throw("unexpected signal value")
}
panic(errorString(sigtable[.sig].name))
}
// dieFromSignal kills the program with a signal.
// This provides the expected exit status for the shell.
// This is only called with fatal signals expected to kill the process.
//
//go:nosplit
//go:nowritebarrierrec
func dieFromSignal( uint32) {
unblocksig()
// Mark the signal as unhandled to ensure it is forwarded.
atomic.Store(&handlingSig[], 0)
raise()
// That should have killed us. On some systems, though, raise
// sends the signal to the whole process rather than to just
// the current thread, which means that the signal may not yet
// have been delivered. Give other threads a chance to run and
// pick up the signal.
osyield()
osyield()
osyield()
// If that didn't work, try _SIG_DFL.
setsig(, _SIG_DFL)
raise()
osyield()
osyield()
osyield()
// If we are still somehow running, just exit with the wrong status.
exit(2)
}
// raisebadsignal is called when a signal is received on a non-Go
// thread, and the Go program does not want to handle it (that is, the
// program has not called os/signal.Notify for the signal).
func raisebadsignal( uint32, *sigctxt) {
if == _SIGPROF {
// Ignore profiling signals that arrive on non-Go threads.
return
}
var uintptr
var int32
if >= _NSIG {
= _SIG_DFL
} else {
= atomic.Loaduintptr(&fwdSig[])
= sigtable[].flags
}
// If the signal is ignored, raising the signal is no-op.
if == _SIG_IGN || ( == _SIG_DFL && &_SigIgn != 0) {
return
}
// Reset the signal handler and raise the signal.
// We are currently running inside a signal handler, so the
// signal is blocked. We need to unblock it before raising the
// signal, or the signal we raise will be ignored until we return
// from the signal handler. We know that the signal was unblocked
// before entering the handler, or else we would not have received
// it. That means that we don't have to worry about blocking it
// again.
unblocksig()
setsig(, )
// If we're linked into a non-Go program we want to try to
// avoid modifying the original context in which the signal
// was raised. If the handler is the default, we know it
// is non-recoverable, so we don't have to worry about
// re-installing sighandler. At this point we can just
// return and the signal will be re-raised and caught by
// the default handler with the correct context.
//
// On FreeBSD, the libthr sigaction code prevents
// this from working so we fall through to raise.
if GOOS != "freebsd" && (isarchive || islibrary) && == _SIG_DFL && !.sigFromUser() {
return
}
raise()
// Give the signal a chance to be delivered.
// In almost all real cases the program is about to crash,
// so sleeping here is not a waste of time.
usleep(1000)
// If the signal didn't cause the program to exit, restore the
// Go signal handler and carry on.
//
// We may receive another instance of the signal before we
// restore the Go handler, but that is not so bad: we know
// that the Go program has been ignoring the signal.
setsig(, abi.FuncPCABIInternal(sighandler))
}
//go:nosplit
func crash() {
dieFromSignal(_SIGABRT)
}
// ensureSigM starts one global, sleeping thread to make sure at least one thread
// is available to catch signals enabled for os/signal.
func ensureSigM() {
if maskUpdatedChan != nil {
return
}
maskUpdatedChan = make(chan struct{})
disableSigChan = make(chan uint32)
enableSigChan = make(chan uint32)
go func() {
// Signal masks are per-thread, so make sure this goroutine stays on one
// thread.
LockOSThread()
defer UnlockOSThread()
// The sigBlocked mask contains the signals not active for os/signal,
// initially all signals except the essential. When signal.Notify()/Stop is called,
// sigenable/sigdisable in turn notify this thread to update its signal
// mask accordingly.
:= sigset_all
for := range sigtable {
if !blockableSig(uint32()) {
sigdelset(&, )
}
}
sigprocmask(_SIG_SETMASK, &, nil)
for {
select {
case := <-enableSigChan:
if > 0 {
sigdelset(&, int())
}
case := <-disableSigChan:
if > 0 && blockableSig() {
sigaddset(&, int())
}
}
sigprocmask(_SIG_SETMASK, &, nil)
maskUpdatedChan <- struct{}{}
}
}()
}
// This is called when we receive a signal when there is no signal stack.
// This can only happen if non-Go code calls sigaltstack to disable the
// signal stack.
func noSignalStack( uint32) {
println("signal", , "received on thread with no signal stack")
throw("non-Go code disabled sigaltstack")
}
// This is called if we receive a signal when there is a signal stack
// but we are not on it. This can only happen if non-Go code called
// sigaction without setting the SS_ONSTACK flag.
func sigNotOnStack( uint32, uintptr, *m) {
println("signal", , "received but handler not on signal stack")
print("mp.gsignal stack [", hex(.gsignal.stack.lo), " ", hex(.gsignal.stack.hi), "], ")
print("mp.g0 stack [", hex(.g0.stack.lo), " ", hex(.g0.stack.hi), "], sp=", hex(), "\n")
throw("non-Go code set up signal handler without SA_ONSTACK flag")
}
// signalDuringFork is called if we receive a signal while doing a fork.
// We do not want signals at that time, as a signal sent to the process
// group may be delivered to the child process, causing confusion.
// This should never be called, because we block signals across the fork;
// this function is just a safety check. See issue 18600 for background.
func signalDuringFork( uint32) {
println("signal", , "received during fork")
throw("signal received during fork")
}
// This runs on a foreign stack, without an m or a g. No stack split.
//
//go:nosplit
//go:norace
//go:nowritebarrierrec
func badsignal( uintptr, *sigctxt) {
if !iscgo && !cgoHasExtraM {
// There is no extra M. needm will not be able to grab
// an M. Instead of hanging, just crash.
// Cannot call split-stack function as there is no G.
writeErrStr("fatal: bad g in signal handler\n")
exit(2)
*(*uintptr)(unsafe.Pointer(uintptr(123))) = 2
}
needm(true)
if !sigsend(uint32()) {
// A foreign thread received the signal sig, and the
// Go code does not want to handle it.
raisebadsignal(uint32(), )
}
dropm()
}
//go:noescape
func sigfwd( uintptr, uint32, *siginfo, unsafe.Pointer)
// Determines if the signal should be handled by Go and if not, forwards the
// signal to the handler that was installed before Go's. Returns whether the
// signal was forwarded.
// This is called by the signal handler, and the world may be stopped.
//
//go:nosplit
//go:nowritebarrierrec
func sigfwdgo( uint32, *siginfo, unsafe.Pointer) bool {
if >= uint32(len(sigtable)) {
return false
}
:= atomic.Loaduintptr(&fwdSig[])
:= sigtable[].flags
// If we aren't handling the signal, forward it.
if atomic.Load(&handlingSig[]) == 0 || !signalsOK {
// If the signal is ignored, doing nothing is the same as forwarding.
if == _SIG_IGN || ( == _SIG_DFL && &_SigIgn != 0) {
return true
}
// We are not handling the signal and there is no other handler to forward to.
// Crash with the default behavior.
if == _SIG_DFL {
setsig(, _SIG_DFL)
dieFromSignal()
return false
}
sigfwd(, , , )
return true
}
// This function and its caller sigtrampgo assumes SIGPIPE is delivered on the
// originating thread. This property does not hold on macOS (golang.org/issue/33384),
// so we have no choice but to ignore SIGPIPE.
if (GOOS == "darwin" || GOOS == "ios") && == _SIGPIPE {
return true
}
// If there is no handler to forward to, no need to forward.
if == _SIG_DFL {
return false
}
:= &sigctxt{, }
// Only forward synchronous signals and SIGPIPE.
// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
// or pipe.
if (.sigFromUser() || &_SigPanic == 0) && != _SIGPIPE {
return false
}
// Determine if the signal occurred inside Go code. We test that:
// (1) we weren't in VDSO page,
// (2) we were in a goroutine (i.e., m.curg != nil), and
// (3) we weren't in CGO.
// (4) we weren't in dropped extra m.
:= sigFetchG()
if != nil && .m != nil && .m.curg != nil && !.m.isExtraInC && !.m.incgo {
return false
}
// Signal not handled by Go, forward it.
if != _SIG_IGN {
sigfwd(, , , )
}
return true
}
// sigsave saves the current thread's signal mask into *p.
// This is used to preserve the non-Go signal mask when a non-Go
// thread calls a Go function.
// This is nosplit and nowritebarrierrec because it is called by needm
// which may be called on a non-Go thread with no g available.
//
//go:nosplit
//go:nowritebarrierrec
func sigsave( *sigset) {
sigprocmask(_SIG_SETMASK, nil, )
}
// msigrestore sets the current thread's signal mask to sigmask.
// This is used to restore the non-Go signal mask when a non-Go thread
// calls a Go function.
// This is nosplit and nowritebarrierrec because it is called by dropm
// after g has been cleared.
//
//go:nosplit
//go:nowritebarrierrec
func msigrestore( sigset) {
sigprocmask(_SIG_SETMASK, &, nil)
}
// sigsetAllExiting is used by sigblock(true) when a thread is
// exiting.
var sigsetAllExiting = func() sigset {
:= sigset_all
// Apply GOOS-specific overrides here, rather than in osinit,
// because osinit may be called before sigsetAllExiting is
// initialized (#51913).
if GOOS == "linux" && iscgo {
// #42494 glibc and musl reserve some signals for
// internal use and require they not be blocked by
// the rest of a normal C runtime. When the go runtime
// blocks...unblocks signals, temporarily, the blocked
// interval of time is generally very short. As such,
// these expectations of *libc code are mostly met by
// the combined go+cgo system of threads. However,
// when go causes a thread to exit, via a return from
// mstart(), the combined runtime can deadlock if
// these signals are blocked. Thus, don't block these
// signals when exiting threads.
// - glibc: SIGCANCEL (32), SIGSETXID (33)
// - musl: SIGTIMER (32), SIGCANCEL (33), SIGSYNCCALL (34)
sigdelset(&, 32)
sigdelset(&, 33)
sigdelset(&, 34)
}
return
}()
// sigblock blocks signals in the current thread's signal mask.
// This is used to block signals while setting up and tearing down g
// when a non-Go thread calls a Go function. When a thread is exiting
// we use the sigsetAllExiting value, otherwise the OS specific
// definition of sigset_all is used.
// This is nosplit and nowritebarrierrec because it is called by needm
// which may be called on a non-Go thread with no g available.
//
//go:nosplit
//go:nowritebarrierrec
func sigblock( bool) {
if {
sigprocmask(_SIG_SETMASK, &sigsetAllExiting, nil)
return
}
sigprocmask(_SIG_SETMASK, &sigset_all, nil)
}
// unblocksig removes sig from the current thread's signal mask.
// This is nosplit and nowritebarrierrec because it is called from
// dieFromSignal, which can be called by sigfwdgo while running in the
// signal handler, on the signal stack, with no g available.
//
//go:nosplit
//go:nowritebarrierrec
func unblocksig( uint32) {
var sigset
sigaddset(&, int())
sigprocmask(_SIG_UNBLOCK, &, nil)
}
// minitSignals is called when initializing a new m to set the
// thread's alternate signal stack and signal mask.
func minitSignals() {
minitSignalStack()
minitSignalMask()
}
// minitSignalStack is called when initializing a new m to set the
// alternate signal stack. If the alternate signal stack is not set
// for the thread (the normal case) then set the alternate signal
// stack to the gsignal stack. If the alternate signal stack is set
// for the thread (the case when a non-Go thread sets the alternate
// signal stack and then calls a Go function) then set the gsignal
// stack to the alternate signal stack. We also set the alternate
// signal stack to the gsignal stack if cgo is not used (regardless
// of whether it is already set). Record which choice was made in
// newSigstack, so that it can be undone in unminit.
func minitSignalStack() {
:= getg().m
var stackt
sigaltstack(nil, &)
if .ss_flags&_SS_DISABLE != 0 || !iscgo {
signalstack(&.gsignal.stack)
.newSigstack = true
} else {
setGsignalStack(&, &.goSigStack)
.newSigstack = false
}
}
// minitSignalMask is called when initializing a new m to set the
// thread's signal mask. When this is called all signals have been
// blocked for the thread. This starts with m.sigmask, which was set
// either from initSigmask for a newly created thread or by calling
// sigsave if this is a non-Go thread calling a Go function. It
// removes all essential signals from the mask, thus causing those
// signals to not be blocked. Then it sets the thread's signal mask.
// After this is called the thread can receive signals.
func minitSignalMask() {
:= getg().m.sigmask
for := range sigtable {
if !blockableSig(uint32()) {
sigdelset(&, )
}
}
sigprocmask(_SIG_SETMASK, &, nil)
}
// unminitSignals is called from dropm, via unminit, to undo the
// effect of calling minit on a non-Go thread.
//
//go:nosplit
func unminitSignals() {
if getg().m.newSigstack {
:= stackt{ss_flags: _SS_DISABLE}
sigaltstack(&, nil)
} else {
// We got the signal stack from someone else. Restore
// the Go-allocated stack in case this M gets reused
// for another thread (e.g., it's an extram). Also, on
// Android, libc allocates a signal stack for all
// threads, so it's important to restore the Go stack
// even on Go-created threads so we can free it.
restoreGsignalStack(&getg().m.goSigStack)
}
}
// blockableSig reports whether sig may be blocked by the signal mask.
// We never want to block the signals marked _SigUnblock;
// these are the synchronous signals that turn into a Go panic.
// We never want to block the preemption signal if it is being used.
// In a Go program--not a c-archive/c-shared--we never want to block
// the signals marked _SigKill or _SigThrow, as otherwise it's possible
// for all running threads to block them and delay their delivery until
// we start a new thread. When linked into a C program we let the C code
// decide on the disposition of those signals.
func blockableSig( uint32) bool {
:= sigtable[].flags
if &_SigUnblock != 0 {
return false
}
if == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
return false
}
if isarchive || islibrary {
return true
}
return &(_SigKill|_SigThrow) == 0
}
// gsignalStack saves the fields of the gsignal stack changed by
// setGsignalStack.
type gsignalStack struct {
stack stack
stackguard0 uintptr
stackguard1 uintptr
stktopsp uintptr
}
// setGsignalStack sets the gsignal stack of the current m to an
// alternate signal stack returned from the sigaltstack system call.
// It saves the old values in *old for use by restoreGsignalStack.
// This is used when handling a signal if non-Go code has set the
// alternate signal stack.
//
//go:nosplit
//go:nowritebarrierrec
func setGsignalStack( *stackt, *gsignalStack) {
:= getg()
if != nil {
.stack = .m.gsignal.stack
.stackguard0 = .m.gsignal.stackguard0
.stackguard1 = .m.gsignal.stackguard1
.stktopsp = .m.gsignal.stktopsp
}
:= uintptr(unsafe.Pointer(.ss_sp))
.m.gsignal.stack.lo =
.m.gsignal.stack.hi = + .ss_size
.m.gsignal.stackguard0 = + stackGuard
.m.gsignal.stackguard1 = + stackGuard
}
// restoreGsignalStack restores the gsignal stack to the value it had
// before entering the signal handler.
//
//go:nosplit
//go:nowritebarrierrec
func restoreGsignalStack( *gsignalStack) {
:= getg().m.gsignal
.stack = .stack
.stackguard0 = .stackguard0
.stackguard1 = .stackguard1
.stktopsp = .stktopsp
}
// signalstack sets the current thread's alternate signal stack to s.
//
//go:nosplit
func signalstack( *stack) {
:= stackt{ss_size: .hi - .lo}
setSignalstackSP(&, .lo)
sigaltstack(&, nil)
}
// setsigsegv is used on darwin/arm64 to fake a segmentation fault.
//
// This is exported via linkname to assembly in runtime/cgo.
//
//go:nosplit
//go:linkname setsigsegv
func setsigsegv( uintptr) {
:= getg()
.sig = _SIGSEGV
.sigpc =
.sigcode0 = _SEGV_MAPERR
.sigcode1 = 0 // TODO: emulate si_addr
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |