// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: type and heap bitmaps.
//
// Stack, data, and bss bitmaps
//
// Stack frames and global variables in the data and bss sections are
// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
// means the word is a live pointer to be visited by the GC (referred to
// as "pointer"). A "0" bit means the word should be ignored by GC
// (referred to as "scalar", though it could be a dead pointer value).
//
// Heap bitmaps
//
// The heap bitmap comprises 1 bit for each pointer-sized word in the heap,
// recording whether a pointer is stored in that word or not. This bitmap
// is stored at the end of a span for small objects and is unrolled at
// runtime from type metadata for all larger objects. Objects without
// pointers have neither a bitmap nor associated type metadata.
//
// Bits in all cases correspond to words in little-endian order.
//
// For small objects, if s is the mspan for the span starting at "start",
// then s.heapBits() returns a slice containing the bitmap for the whole span.
// That is, s.heapBits()[0] holds the goarch.PtrSize*8 bits for the first
// goarch.PtrSize*8 words from "start" through "start+63*ptrSize" in the span.
// On a related note, small objects are always small enough that their bitmap
// fits in goarch.PtrSize*8 bits, so writing out bitmap data takes two bitmap
// writes at most (because object boundaries don't generally lie on
// s.heapBits()[i] boundaries).
//
// For larger objects, if t is the type for the object starting at "start",
// within some span whose mspan is s, then the bitmap at t.GCData is "tiled"
// from "start" through "start+s.elemsize".
// Specifically, the first bit of t.GCData corresponds to the word at "start",
// the second to the word after "start", and so on up to t.PtrBytes. At t.PtrBytes,
// we skip to "start+t.Size_" and begin again from there. This process is
// repeated until we hit "start+s.elemsize".
// This tiling algorithm supports array data, since the type always refers to
// the element type of the array. Single objects are considered the same as
// single-element arrays.
// The tiling algorithm may scan data past the end of the compiler-recognized
// object, but any unused data within the allocation slot (i.e. within s.elemsize)
// is zeroed, so the GC just observes nil pointers.
// Note that this "tiled" bitmap isn't stored anywhere; it is generated on-the-fly.
//
// For objects without their own span, the type metadata is stored in the first
// word before the object at the beginning of the allocation slot. For objects
// with their own span, the type metadata is stored in the mspan.
//
// The bitmap for small unallocated objects in scannable spans is not maintained
// (can be junk).

package runtime

import (
	
	
	
	
	
)

const (
	// A malloc header is functionally a single type pointer, but
	// we need to use 8 here to ensure 8-byte alignment of allocations
	// on 32-bit platforms. It's wasteful, but a lot of code relies on
	// 8-byte alignment for 8-byte atomics.
	mallocHeaderSize = 8

	// The minimum object size that has a malloc header, exclusive.
	//
	// The size of this value controls overheads from the malloc header.
	// The minimum size is bound by writeHeapBitsSmall, which assumes that the
	// pointer bitmap for objects of a size smaller than this doesn't cross
	// more than one pointer-word boundary. This sets an upper-bound on this
	// value at the number of bits in a uintptr, multiplied by the pointer
	// size in bytes.
	//
	// We choose a value here that has a natural cutover point in terms of memory
	// overheads. This value just happens to be the maximum possible value this
	// can be.
	//
	// A span with heap bits in it will have 128 bytes of heap bits on 64-bit
	// platforms, and 256 bytes of heap bits on 32-bit platforms. The first size
	// class where malloc headers match this overhead for 64-bit platforms is
	// 512 bytes (8 KiB / 512 bytes * 8 bytes-per-header = 128 bytes of overhead).
	// On 32-bit platforms, this same point is the 256 byte size class
	// (8 KiB / 256 bytes * 8 bytes-per-header = 256 bytes of overhead).
	//
	// Guaranteed to be exactly at a size class boundary. The reason this value is
	// an exclusive minimum is subtle. Suppose we're allocating a 504-byte object
	// and its rounded up to 512 bytes for the size class. If minSizeForMallocHeader
	// is 512 and an inclusive minimum, then a comparison against minSizeForMallocHeader
	// by the two values would produce different results. In other words, the comparison
	// would not be invariant to size-class rounding. Eschewing this property means a
	// more complex check or possibly storing additional state to determine whether a
	// span has malloc headers.
	minSizeForMallocHeader = goarch.PtrSize * ptrBits
)

// heapBitsInSpan returns true if the size of an object implies its ptr/scalar
// data is stored at the end of the span, and is accessible via span.heapBits.
//
// Note: this works for both rounded-up sizes (span.elemsize) and unrounded
// type sizes because minSizeForMallocHeader is guaranteed to be at a size
// class boundary.
//
//go:nosplit
func heapBitsInSpan( uintptr) bool {
	// N.B. minSizeForMallocHeader is an exclusive minimum so that this function is
	// invariant under size-class rounding on its input.
	return  <= minSizeForMallocHeader
}

// typePointers is an iterator over the pointers in a heap object.
//
// Iteration through this type implements the tiling algorithm described at the
// top of this file.
type typePointers struct {
	// elem is the address of the current array element of type typ being iterated over.
	// Objects that are not arrays are treated as single-element arrays, in which case
	// this value does not change.
	elem uintptr

	// addr is the address the iterator is currently working from and describes
	// the address of the first word referenced by mask.
	addr uintptr

	// mask is a bitmask where each bit corresponds to pointer-words after addr.
	// Bit 0 is the pointer-word at addr, Bit 1 is the next word, and so on.
	// If a bit is 1, then there is a pointer at that word.
	// nextFast and next mask out bits in this mask as their pointers are processed.
	mask uintptr

	// typ is a pointer to the type information for the heap object's type.
	// This may be nil if the object is in a span where heapBitsInSpan(span.elemsize) is true.
	typ *_type
}

// typePointersOf returns an iterator over all heap pointers in the range [addr, addr+size).
//
// addr and addr+size must be in the range [span.base(), span.limit).
//
// Note: addr+size must be passed as the limit argument to the iterator's next method on
// each iteration. This slightly awkward API is to allow typePointers to be destructured
// by the compiler.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func ( *mspan) (,  uintptr) typePointers {
	 := .objBase()
	 := .typePointersOfUnchecked()
	if  ==  &&  == .elemsize {
		return 
	}
	return .fastForward(-.addr, +)
}

// typePointersOfUnchecked is like typePointersOf, but assumes addr is the base
// of an allocation slot in a span (the start of the object if no header, the
// header otherwise). It returns an iterator that generates all pointers
// in the range [addr, addr+span.elemsize).
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func ( *mspan) ( uintptr) typePointers {
	const  = false
	if  && .objBase() !=  {
		print("runtime: addr=", , " base=", .objBase(), "\n")
		throw("typePointersOfUnchecked consisting of non-base-address for object")
	}

	 := .spanclass
	if .noscan() {
		return typePointers{}
	}
	if heapBitsInSpan(.elemsize) {
		// Handle header-less objects.
		return typePointers{elem: , addr: , mask: .heapBitsSmallForAddr()}
	}

	// All of these objects have a header.
	var  *_type
	if .sizeclass() != 0 {
		// Pull the allocation header from the first word of the object.
		 = *(**_type)(unsafe.Pointer())
		 += mallocHeaderSize
	} else {
		 = .largeType
		if  == nil {
			// Allow a nil type here for delayed zeroing. See mallocgc.
			return typePointers{}
		}
	}
	 := .GCData
	return typePointers{elem: , addr: , mask: readUintptr(), typ: }
}

// typePointersOfType is like typePointersOf, but assumes addr points to one or more
// contiguous instances of the provided type. The provided type must not be nil and
// it must not have its type metadata encoded as a gcprog.
//
// It returns an iterator that tiles typ.GCData starting from addr. It's the caller's
// responsibility to limit iteration.
//
// nosplit because its callers are nosplit and require all their callees to be nosplit.
//
//go:nosplit
func ( *mspan) ( *abi.Type,  uintptr) typePointers {
	const  = false
	if  && ( == nil || .Kind_&abi.KindGCProg != 0) {
		throw("bad type passed to typePointersOfType")
	}
	if .spanclass.noscan() {
		return typePointers{}
	}
	// Since we have the type, pretend we have a header.
	 := .GCData
	return typePointers{elem: , addr: , mask: readUintptr(), typ: }
}

// nextFast is the fast path of next. nextFast is written to be inlineable and,
// as the name implies, fast.
//
// Callers that are performance-critical should iterate using the following
// pattern:
//
//	for {
//		var addr uintptr
//		if tp, addr = tp.nextFast(); addr == 0 {
//			if tp, addr = tp.next(limit); addr == 0 {
//				break
//			}
//		}
//		// Use addr.
//		...
//	}
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func ( typePointers) () (typePointers, uintptr) {
	// TESTQ/JEQ
	if .mask == 0 {
		return , 0
	}
	// BSFQ
	var  int
	if goarch.PtrSize == 8 {
		 = sys.TrailingZeros64(uint64(.mask))
	} else {
		 = sys.TrailingZeros32(uint32(.mask))
	}
	// BTCQ
	.mask ^= uintptr(1) << ( & (ptrBits - 1))
	// LEAQ (XX)(XX*8)
	return , .addr + uintptr()*goarch.PtrSize
}

// next advances the pointers iterator, returning the updated iterator and
// the address of the next pointer.
//
// limit must be the same each time it is passed to next.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func ( typePointers) ( uintptr) (typePointers, uintptr) {
	for {
		if .mask != 0 {
			return .nextFast()
		}

		// Stop if we don't actually have type information.
		if .typ == nil {
			return typePointers{}, 0
		}

		// Advance to the next element if necessary.
		if .addr+goarch.PtrSize*ptrBits >= .elem+.typ.PtrBytes {
			.elem += .typ.Size_
			.addr = .elem
		} else {
			.addr += ptrBits * goarch.PtrSize
		}

		// Check if we've exceeded the limit with the last update.
		if .addr >=  {
			return typePointers{}, 0
		}

		// Grab more bits and try again.
		.mask = readUintptr(addb(.typ.GCData, (.addr-.elem)/goarch.PtrSize/8))
		if .addr+goarch.PtrSize*ptrBits >  {
			 := (.addr + goarch.PtrSize*ptrBits - ) / goarch.PtrSize
			.mask &^= ((1 << ()) - 1) << (ptrBits - )
		}
	}
}

// fastForward moves the iterator forward by n bytes. n must be a multiple
// of goarch.PtrSize. limit must be the same limit passed to next for this
// iterator.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func ( typePointers) (,  uintptr) typePointers {
	// Basic bounds check.
	 := .addr + 
	if  >=  {
		return typePointers{}
	}
	if .typ == nil {
		// Handle small objects.
		// Clear any bits before the target address.
		.mask &^= (1 << (( - .addr) / goarch.PtrSize)) - 1
		// Clear any bits past the limit.
		if .addr+goarch.PtrSize*ptrBits >  {
			 := (.addr + goarch.PtrSize*ptrBits - ) / goarch.PtrSize
			.mask &^= ((1 << ()) - 1) << (ptrBits - )
		}
		return 
	}

	// Move up elem and addr.
	// Offsets within an element are always at a ptrBits*goarch.PtrSize boundary.
	if  >= .typ.Size_ {
		// elem needs to be moved to the element containing
		// tp.addr + n.
		 := .elem
		.elem += (.addr - .elem + ) / .typ.Size_ * .typ.Size_
		.addr = .elem + alignDown(-(.elem-), ptrBits*goarch.PtrSize)
	} else {
		.addr += alignDown(, ptrBits*goarch.PtrSize)
	}

	if .addr-.elem >= .typ.PtrBytes {
		// We're starting in the non-pointer area of an array.
		// Move up to the next element.
		.elem += .typ.Size_
		.addr = .elem
		.mask = readUintptr(.typ.GCData)

		// We may have exceeded the limit after this. Bail just like next does.
		if .addr >=  {
			return typePointers{}
		}
	} else {
		// Grab the mask, but then clear any bits before the target address and any
		// bits over the limit.
		.mask = readUintptr(addb(.typ.GCData, (.addr-.elem)/goarch.PtrSize/8))
		.mask &^= (1 << (( - .addr) / goarch.PtrSize)) - 1
	}
	if .addr+goarch.PtrSize*ptrBits >  {
		 := (.addr + goarch.PtrSize*ptrBits - ) / goarch.PtrSize
		.mask &^= ((1 << ()) - 1) << (ptrBits - )
	}
	return 
}

// objBase returns the base pointer for the object containing addr in span.
//
// Assumes that addr points into a valid part of span (span.base() <= addr < span.limit).
//
//go:nosplit
func ( *mspan) ( uintptr) uintptr {
	return .base() + .objIndex()*.elemsize
}

// bulkBarrierPreWrite executes a write barrier
// for every pointer slot in the memory range [src, src+size),
// using pointer/scalar information from [dst, dst+size).
// This executes the write barriers necessary before a memmove.
// src, dst, and size must be pointer-aligned.
// The range [dst, dst+size) must lie within a single object.
// It does not perform the actual writes.
//
// As a special case, src == 0 indicates that this is being used for a
// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
// barrier.
//
// Callers should call bulkBarrierPreWrite immediately before
// calling memmove(dst, src, size). This function is marked nosplit
// to avoid being preempted; the GC must not stop the goroutine
// between the memmove and the execution of the barriers.
// The caller is also responsible for cgo pointer checks if this
// may be writing Go pointers into non-Go memory.
//
// Pointer data is not maintained for allocations containing
// no pointers at all; any caller of bulkBarrierPreWrite must first
// make sure the underlying allocation contains pointers, usually
// by checking typ.PtrBytes.
//
// The typ argument is the type of the space at src and dst (and the
// element type if src and dst refer to arrays) and it is optional.
// If typ is nil, the barrier will still behave as expected and typ
// is used purely as an optimization. However, it must be used with
// care.
//
// If typ is not nil, then src and dst must point to one or more values
// of type typ. The caller must ensure that the ranges [src, src+size)
// and [dst, dst+size) refer to one or more whole values of type src and
// dst (leaving off the pointerless tail of the space is OK). If this
// precondition is not followed, this function will fail to scan the
// right pointers.
//
// When in doubt, pass nil for typ. That is safe and will always work.
//
// Callers must perform cgo checks if goexperiment.CgoCheck2.
//
//go:nosplit
func bulkBarrierPreWrite(, ,  uintptr,  *abi.Type) {
	if (||)&(goarch.PtrSize-1) != 0 {
		throw("bulkBarrierPreWrite: unaligned arguments")
	}
	if !writeBarrier.enabled {
		return
	}
	 := spanOf()
	if  == nil {
		// If dst is a global, use the data or BSS bitmaps to
		// execute write barriers.
		for ,  := range activeModules() {
			if .data <=  &&  < .edata {
				bulkBarrierBitmap(, , , -.data, .gcdatamask.bytedata)
				return
			}
		}
		for ,  := range activeModules() {
			if .bss <=  &&  < .ebss {
				bulkBarrierBitmap(, , , -.bss, .gcbssmask.bytedata)
				return
			}
		}
		return
	} else if .state.get() != mSpanInUse ||  < .base() || .limit <=  {
		// dst was heap memory at some point, but isn't now.
		// It can't be a global. It must be either our stack,
		// or in the case of direct channel sends, it could be
		// another stack. Either way, no need for barriers.
		// This will also catch if dst is in a freed span,
		// though that should never have.
		return
	}
	 := &getg().m.p.ptr().wbBuf

	// Double-check that the bitmaps generated in the two possible paths match.
	const  = false
	if  {
		doubleCheckTypePointersOfType(, , , )
	}

	var  typePointers
	if  != nil && .Kind_&abi.KindGCProg == 0 {
		 = .typePointersOfType(, )
	} else {
		 = .typePointersOf(, )
	}
	if  == 0 {
		for {
			var  uintptr
			if ,  = .next( + );  == 0 {
				break
			}
			 := (*uintptr)(unsafe.Pointer())
			 := .get1()
			[0] = *
		}
	} else {
		for {
			var  uintptr
			if ,  = .next( + );  == 0 {
				break
			}
			 := (*uintptr)(unsafe.Pointer())
			 := (*uintptr)(unsafe.Pointer( + ( - )))
			 := .get2()
			[0] = *
			[1] = *
		}
	}
}

// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
// does not execute write barriers for [dst, dst+size).
//
// In addition to the requirements of bulkBarrierPreWrite
// callers need to ensure [dst, dst+size) is zeroed.
//
// This is used for special cases where e.g. dst was just
// created and zeroed with malloc.
//
// The type of the space can be provided purely as an optimization.
// See bulkBarrierPreWrite's comment for more details -- use this
// optimization with great care.
//
//go:nosplit
func bulkBarrierPreWriteSrcOnly(, ,  uintptr,  *abi.Type) {
	if (||)&(goarch.PtrSize-1) != 0 {
		throw("bulkBarrierPreWrite: unaligned arguments")
	}
	if !writeBarrier.enabled {
		return
	}
	 := &getg().m.p.ptr().wbBuf
	 := spanOf()

	// Double-check that the bitmaps generated in the two possible paths match.
	const  = false
	if  {
		doubleCheckTypePointersOfType(, , , )
	}

	var  typePointers
	if  != nil && .Kind_&abi.KindGCProg == 0 {
		 = .typePointersOfType(, )
	} else {
		 = .typePointersOf(, )
	}
	for {
		var  uintptr
		if ,  = .next( + );  == 0 {
			break
		}
		 := (*uintptr)(unsafe.Pointer( -  + ))
		 := .get1()
		[0] = *
	}
}

// initHeapBits initializes the heap bitmap for a span.
//
// TODO(mknyszek): This should set the heap bits for single pointer
// allocations eagerly to avoid calling heapSetType at allocation time,
// just to write one bit.
func ( *mspan) ( bool) {
	if (!.spanclass.noscan() && heapBitsInSpan(.elemsize)) || .isUserArenaChunk {
		 := .heapBits()
		clear()
	}
}

// heapBits returns the heap ptr/scalar bits stored at the end of the span for
// small object spans and heap arena spans.
//
// Note that the uintptr of each element means something different for small object
// spans and for heap arena spans. Small object spans are easy: they're never interpreted
// as anything but uintptr, so they're immune to differences in endianness. However, the
// heapBits for user arena spans is exposed through a dummy type descriptor, so the byte
// ordering needs to match the same byte ordering the compiler would emit. The compiler always
// emits the bitmap data in little endian byte ordering, so on big endian platforms these
// uintptrs will have their byte orders swapped from what they normally would be.
//
// heapBitsInSpan(span.elemsize) or span.isUserArenaChunk must be true.
//
//go:nosplit
func ( *mspan) () []uintptr {
	const  = false

	if  && !.isUserArenaChunk {
		if .spanclass.noscan() {
			throw("heapBits called for noscan")
		}
		if .elemsize > minSizeForMallocHeader {
			throw("heapBits called for span class that should have a malloc header")
		}
	}
	// Find the bitmap at the end of the span.
	//
	// Nearly every span with heap bits is exactly one page in size. Arenas are the only exception.
	if .npages == 1 {
		// This will be inlined and constant-folded down.
		return heapBitsSlice(.base(), pageSize)
	}
	return heapBitsSlice(.base(), .npages*pageSize)
}

// Helper for constructing a slice for the span's heap bits.
//
//go:nosplit
func heapBitsSlice(,  uintptr) []uintptr {
	 :=  / goarch.PtrSize / 8
	 := int( / goarch.PtrSize)
	var  notInHeapSlice
	 = notInHeapSlice{(*notInHeap)(unsafe.Pointer( +  - )), , }
	return *(*[]uintptr)(unsafe.Pointer(&))
}

// heapBitsSmallForAddr loads the heap bits for the object stored at addr from span.heapBits.
//
// addr must be the base pointer of an object in the span. heapBitsInSpan(span.elemsize)
// must be true.
//
//go:nosplit
func ( *mspan) ( uintptr) uintptr {
	 := .npages * pageSize
	 :=  / goarch.PtrSize / 8
	 := (*byte)(unsafe.Pointer(.base() +  - ))

	// These objects are always small enough that their bitmaps
	// fit in a single word, so just load the word or two we need.
	//
	// Mirrors mspan.writeHeapBitsSmall.
	//
	// We should be using heapBits(), but unfortunately it introduces
	// both bounds checks panics and throw which causes us to exceed
	// the nosplit limit in quite a few cases.
	 := ( - .base()) / goarch.PtrSize / ptrBits
	 := ( - .base()) / goarch.PtrSize % ptrBits
	 := .elemsize / goarch.PtrSize
	 := (*uintptr)(unsafe.Pointer(addb(, goarch.PtrSize*(+0))))
	 := (*uintptr)(unsafe.Pointer(addb(, goarch.PtrSize*(+1))))

	var  uintptr
	if + > ptrBits {
		// Two reads.
		 := ptrBits - 
		 :=  - 
		 = * >> 
		 |= (* & ((1 << ) - 1)) << 
	} else {
		// One read.
		 = (* >> ) & ((1 << ) - 1)
	}
	return 
}

// writeHeapBitsSmall writes the heap bits for small objects whose ptr/scalar data is
// stored as a bitmap at the end of the span.
//
// Assumes dataSize is <= ptrBits*goarch.PtrSize. x must be a pointer into the span.
// heapBitsInSpan(dataSize) must be true. dataSize must be >= typ.Size_.
//
//go:nosplit
func ( *mspan) (,  uintptr,  *_type) ( uintptr) {
	// The objects here are always really small, so a single load is sufficient.
	 := readUintptr(.GCData)

	// Create repetitions of the bitmap if we have a small array.
	 := .elemsize / goarch.PtrSize
	 = .PtrBytes
	 := 
	switch .Size_ {
	case goarch.PtrSize:
		 = (1 << ( / goarch.PtrSize)) - 1
	default:
		for  := .Size_;  < ;  += .Size_ {
			 |=  << ( / goarch.PtrSize)
			 += .Size_
		}
	}

	// Since we're never writing more than one uintptr's worth of bits, we're either going
	// to do one or two writes.
	 := .heapBits()
	 := ( - .base()) / goarch.PtrSize
	 :=  / ptrBits
	 :=  % ptrBits
	if + > ptrBits {
		// Two writes.
		 := ptrBits - 
		 :=  - 
		[+0] = [+0]&(^uintptr(0)>>) | ( << )
		[+1] = [+1]&^((1<<)-1) | ( >> )
	} else {
		// One write.
		[] = ([] &^ (((1 << ) - 1) << )) | ( << )
	}

	const  = false
	if  {
		 := .heapBitsSmallForAddr()
		if  !=  {
			print("runtime: x=", hex(), " i=", , " j=", , " bits=", , "\n")
			print("runtime: dataSize=", , " typ.Size_=", .Size_, " typ.PtrBytes=", .PtrBytes, "\n")
			print("runtime: src0=", hex(), " src=", hex(), " srcRead=", hex(), "\n")
			throw("bad pointer bits written for small object")
		}
	}
	return
}

// heapSetType records that the new allocation [x, x+size)
// holds in [x, x+dataSize) one or more values of type typ.
// (The number of values is given by dataSize / typ.Size.)
// If dataSize < size, the fragment [x+dataSize, x+size) is
// recorded as non-pointer data.
// It is known that the type has pointers somewhere;
// malloc does not call heapSetType when there are no pointers.
//
// There can be read-write races between heapSetType and things
// that read the heap metadata like scanobject. However, since
// heapSetType is only used for objects that have not yet been
// made reachable, readers will ignore bits being modified by this
// function. This does mean this function cannot transiently modify
// shared memory that belongs to neighboring objects. Also, on weakly-ordered
// machines, callers must execute a store/store (publication) barrier
// between calling this function and making the object reachable.
func heapSetType(,  uintptr,  *_type,  **_type,  *mspan) ( uintptr) {
	const  = false

	 := 
	if  == nil {
		if  && (!heapBitsInSpan() || !heapBitsInSpan(.elemsize)) {
			throw("tried to write heap bits, but no heap bits in span")
		}
		// Handle the case where we have no malloc header.
		 = .writeHeapBitsSmall(, , )
	} else {
		if .Kind_&abi.KindGCProg != 0 {
			// Allocate space to unroll the gcprog. This space will consist of
			// a dummy _type value and the unrolled gcprog. The dummy _type will
			// refer to the bitmap, and the mspan will refer to the dummy _type.
			if .spanclass.sizeclass() != 0 {
				throw("GCProg for type that isn't large")
			}
			 := alignUp(unsafe.Sizeof(_type{}), goarch.PtrSize)
			 := 
			 += alignUp(.PtrBytes/goarch.PtrSize/8, goarch.PtrSize)
			 := alignUp(, pageSize) / pageSize
			var  *mspan
			systemstack(func() {
				 = mheap_.allocManual(, spanAllocPtrScalarBits)
				memclrNoHeapPointers(unsafe.Pointer(.base()), .npages*pageSize)
			})
			// Write a dummy _type in the new space.
			//
			// We only need to write size, PtrBytes, and GCData, since that's all
			// the GC cares about.
			 = (*_type)(unsafe.Pointer(.base()))
			.Size_ = .Size_
			.PtrBytes = .PtrBytes
			.GCData = (*byte)(add(unsafe.Pointer(.base()), ))
			.TFlag = abi.TFlagUnrolledBitmap

			// Expand the GC program into space reserved at the end of the new span.
			runGCProg(addb(.GCData, 4), .GCData)
		}

		// Write out the header.
		* = 
		 = .elemsize
	}

	if  {
		doubleCheckHeapPointers(, , , , )

		// To exercise the less common path more often, generate
		// a random interior pointer and make sure iterating from
		// that point works correctly too.
		 := .elemsize
		if  == nil {
			 = 
		}
		 := alignUp(uintptr(cheaprand())%, goarch.PtrSize)
		 :=  - 
		if  == 0 {
			 -= goarch.PtrSize
			 += goarch.PtrSize
		}
		 :=  + 
		 -= alignDown(uintptr(cheaprand())%, goarch.PtrSize)
		if  == 0 {
			 = goarch.PtrSize
		}
		// Round up the type to the size of the type.
		 = ( + .Size_ - 1) / .Size_ * .Size_
		if + > + {
			 =  +  - 
		}
		doubleCheckHeapPointersInterior(, , , , , , )
	}
	return
}

func doubleCheckHeapPointers(,  uintptr,  *_type,  **_type,  *mspan) {
	// Check that scanning the full object works.
	 := .typePointersOfUnchecked(.objBase())
	 := .elemsize
	if  == nil {
		 = 
	}
	 := false
	for  := uintptr(0);  < ;  += goarch.PtrSize {
		// Compute the pointer bit we want at offset i.
		 := false
		if  < .elemsize {
			 :=  % .Size_
			if  < .PtrBytes {
				 :=  / goarch.PtrSize
				 = *addb(.GCData, /8)>>(%8)&1 != 0
			}
		}
		if  {
			var  uintptr
			,  = .next( + .elemsize)
			if  == 0 {
				println("runtime: found bad iterator")
			}
			if  != + {
				print("runtime: addr=", hex(), " x+i=", hex(+), "\n")
				 = true
			}
		}
	}
	if ! {
		var  uintptr
		,  = .next( + .elemsize)
		if  == 0 {
			return
		}
		println("runtime: extra pointer:", hex())
	}
	print("runtime: hasHeader=",  != nil, " typ.Size_=", .Size_, " hasGCProg=", .Kind_&abi.KindGCProg != 0, "\n")
	print("runtime: x=", hex(), " dataSize=", , " elemsize=", .elemsize, "\n")
	print("runtime: typ=", unsafe.Pointer(), " typ.PtrBytes=", .PtrBytes, "\n")
	print("runtime: limit=", hex(+.elemsize), "\n")
	 = .typePointersOfUnchecked()
	dumpTypePointers()
	for {
		var  uintptr
		if ,  = .next( + .elemsize);  == 0 {
			println("runtime: would've stopped here")
			dumpTypePointers()
			break
		}
		print("runtime: addr=", hex(), "\n")
		dumpTypePointers()
	}
	throw("heapSetType: pointer entry not correct")
}

func doubleCheckHeapPointersInterior(, , ,  uintptr,  *_type,  **_type,  *mspan) {
	 := false
	if  <  {
		print("runtime: interior=", hex(), " x=", hex(), "\n")
		throw("found bad interior pointer")
	}
	 :=  - 
	 := .typePointersOf(, )
	for  := ;  < +;  += goarch.PtrSize {
		// Compute the pointer bit we want at offset i.
		 := false
		if  < .elemsize {
			 :=  % .Size_
			if  < .PtrBytes {
				 :=  / goarch.PtrSize
				 = *addb(.GCData, /8)>>(%8)&1 != 0
			}
		}
		if  {
			var  uintptr
			,  = .next( + )
			if  == 0 {
				println("runtime: found bad iterator")
				 = true
			}
			if  != + {
				print("runtime: addr=", hex(), " x+i=", hex(+), "\n")
				 = true
			}
		}
	}
	if ! {
		var  uintptr
		,  = .next( + )
		if  == 0 {
			return
		}
		println("runtime: extra pointer:", hex())
	}
	print("runtime: hasHeader=",  != nil, " typ.Size_=", .Size_, "\n")
	print("runtime: x=", hex(), " dataSize=", , " elemsize=", .elemsize, " interior=", hex(), " size=", , "\n")
	print("runtime: limit=", hex(+), "\n")
	 = .typePointersOf(, )
	dumpTypePointers()
	for {
		var  uintptr
		if ,  = .next( + );  == 0 {
			println("runtime: would've stopped here")
			dumpTypePointers()
			break
		}
		print("runtime: addr=", hex(), "\n")
		dumpTypePointers()
	}

	print("runtime: want: ")
	for  := ;  < +;  += goarch.PtrSize {
		// Compute the pointer bit we want at offset i.
		 := false
		if  <  {
			 :=  % .Size_
			if  < .PtrBytes {
				 :=  / goarch.PtrSize
				 = *addb(.GCData, /8)>>(%8)&1 != 0
			}
		}
		if  {
			print("1")
		} else {
			print("0")
		}
	}
	println()

	throw("heapSetType: pointer entry not correct")
}

//go:nosplit
func doubleCheckTypePointersOfType( *mspan,  *_type, ,  uintptr) {
	if  == nil || .Kind_&abi.KindGCProg != 0 {
		return
	}
	if .Kind_&abi.KindMask == abi.Interface {
		// Interfaces are unfortunately inconsistently handled
		// when it comes to the type pointer, so it's easy to
		// produce a lot of false positives here.
		return
	}
	 := .typePointersOfType(, )
	 := .typePointersOf(, )
	 := false
	for {
		var ,  uintptr
		,  = .next( + )
		,  = .next( + )
		if  !=  {
			 = true
			break
		}
		if  == 0 {
			break
		}
	}
	if  {
		 := .typePointersOfType(, )
		 := .typePointersOf(, )
		print("runtime: addr=", hex(), " size=", , "\n")
		print("runtime: type=", toRType().string(), "\n")
		dumpTypePointers()
		dumpTypePointers()
		for {
			var ,  uintptr
			,  = .next( + )
			,  = .next( + )
			print("runtime: ", hex(), " ", hex(), "\n")
			if  == 0 &&  == 0 {
				break
			}
		}
		throw("mismatch between typePointersOfType and typePointersOf")
	}
}

func dumpTypePointers( typePointers) {
	print("runtime: tp.elem=", hex(.elem), " tp.typ=", unsafe.Pointer(.typ), "\n")
	print("runtime: tp.addr=", hex(.addr), " tp.mask=")
	for  := uintptr(0);  < ptrBits; ++ {
		if .mask&(uintptr(1)<<) != 0 {
			print("1")
		} else {
			print("0")
		}
	}
	println()
}

// addb returns the byte pointer p+n.
//
//go:nowritebarrier
//go:nosplit
func addb( *byte,  uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer()) + ))
}

// subtractb returns the byte pointer p-n.
//
//go:nowritebarrier
//go:nosplit
func subtractb( *byte,  uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, -n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer()) - ))
}

// add1 returns the byte pointer p+1.
//
//go:nowritebarrier
//go:nosplit
func add1( *byte) *byte {
	// Note: wrote out full expression instead of calling addb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer()) + 1))
}

// subtract1 returns the byte pointer p-1.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nowritebarrier
//go:nosplit
func subtract1( *byte) *byte {
	// Note: wrote out full expression instead of calling subtractb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer()) - 1))
}

// markBits provides access to the mark bit for an object in the heap.
// bytep points to the byte holding the mark bit.
// mask is a byte with a single bit set that can be &ed with *bytep
// to see if the bit has been set.
// *m.byte&m.mask != 0 indicates the mark bit is set.
// index can be used along with span information to generate
// the address of the object in the heap.
// We maintain one set of mark bits for allocation and one for
// marking purposes.
type markBits struct {
	bytep *uint8
	mask  uint8
	index uintptr
}

//go:nosplit
func ( *mspan) ( uintptr) markBits {
	,  := .allocBits.bitp()
	return markBits{, , }
}

// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
// and negates them so that ctz (count trailing zeros) instructions
// can be used. It then places these 8 bytes into the cached 64 bit
// s.allocCache.
func ( *mspan) ( uint16) {
	 := (*[8]uint8)(unsafe.Pointer(.allocBits.bytep(uintptr())))
	 := uint64(0)
	 |= uint64([0])
	 |= uint64([1]) << (1 * 8)
	 |= uint64([2]) << (2 * 8)
	 |= uint64([3]) << (3 * 8)
	 |= uint64([4]) << (4 * 8)
	 |= uint64([5]) << (5 * 8)
	 |= uint64([6]) << (6 * 8)
	 |= uint64([7]) << (7 * 8)
	.allocCache = ^
}

// nextFreeIndex returns the index of the next free object in s at
// or after s.freeindex.
// There are hardware instructions that can be used to make this
// faster if profiling warrants it.
func ( *mspan) () uint16 {
	 := .freeindex
	 := .nelems
	if  ==  {
		return 
	}
	if  >  {
		throw("s.freeindex > s.nelems")
	}

	 := .allocCache

	 := sys.TrailingZeros64()
	for  == 64 {
		// Move index to start of next cached bits.
		 = ( + 64) &^ (64 - 1)
		if  >=  {
			.freeindex = 
			return 
		}
		 :=  / 8
		// Refill s.allocCache with the next 64 alloc bits.
		.refillAllocCache()
		 = .allocCache
		 = sys.TrailingZeros64()
		// nothing available in cached bits
		// grab the next 8 bytes and try again.
	}
	 :=  + uint16()
	if  >=  {
		.freeindex = 
		return 
	}

	.allocCache >>= uint( + 1)
	 =  + 1

	if %64 == 0 &&  !=  {
		// We just incremented s.freeindex so it isn't 0.
		// As each 1 in s.allocCache was encountered and used for allocation
		// it was shifted away. At this point s.allocCache contains all 0s.
		// Refill s.allocCache so that it corresponds
		// to the bits at s.allocBits starting at s.freeindex.
		 :=  / 8
		.refillAllocCache()
	}
	.freeindex = 
	return 
}

// isFree reports whether the index'th object in s is unallocated.
//
// The caller must ensure s.state is mSpanInUse, and there must have
// been no preemption points since ensuring this (which could allow a
// GC transition, which would allow the state to change).
func ( *mspan) ( uintptr) bool {
	if  < uintptr(.freeIndexForScan) {
		return false
	}
	,  := .allocBits.bitp()
	return *& == 0
}

// divideByElemSize returns n/s.elemsize.
// n must be within [0, s.npages*_PageSize),
// or may be exactly s.npages*_PageSize
// if s.elemsize is from sizeclasses.go.
//
// nosplit, because it is called by objIndex, which is nosplit
//
//go:nosplit
func ( *mspan) ( uintptr) uintptr {
	const  = false

	// See explanation in mksizeclasses.go's computeDivMagic.
	 := uintptr((uint64() * uint64(.divMul)) >> 32)

	if  &&  != /.elemsize {
		println(, "/", .elemsize, "should be", /.elemsize, "but got", )
		throw("bad magic division")
	}
	return 
}

// nosplit, because it is called by other nosplit code like findObject
//
//go:nosplit
func ( *mspan) ( uintptr) uintptr {
	return .divideByElemSize( - .base())
}

func markBitsForAddr( uintptr) markBits {
	 := spanOf()
	 := .objIndex()
	return .markBitsForIndex()
}

func ( *mspan) ( uintptr) markBits {
	,  := .gcmarkBits.bitp()
	return markBits{, , }
}

func ( *mspan) () markBits {
	return markBits{&.gcmarkBits.x, uint8(1), 0}
}

// isMarked reports whether mark bit m is set.
func ( markBits) () bool {
	return *.bytep&.mask != 0
}

// setMarked sets the marked bit in the markbits, atomically.
func ( markBits) () {
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.Or8(.bytep, .mask)
}

// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
func ( markBits) () {
	*.bytep |= .mask
}

// clearMarked clears the marked bit in the markbits, atomically.
func ( markBits) () {
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.And8(.bytep, ^.mask)
}

// markBitsForSpan returns the markBits for the span base address base.
func markBitsForSpan( uintptr) ( markBits) {
	 = markBitsForAddr()
	if .mask != 1 {
		throw("markBitsForSpan: unaligned start")
	}
	return 
}

// advance advances the markBits to the next object in the span.
func ( *markBits) () {
	if .mask == 1<<7 {
		.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(.bytep)) + 1))
		.mask = 1
	} else {
		.mask = .mask << 1
	}
	.index++
}

// clobberdeadPtr is a special value that is used by the compiler to
// clobber dead stack slots, when -clobberdead flag is set.
const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32))

// badPointer throws bad pointer in heap panic.
func badPointer( *mspan, , ,  uintptr) {
	// Typically this indicates an incorrect use
	// of unsafe or cgo to store a bad pointer in
	// the Go heap. It may also indicate a runtime
	// bug.
	//
	// TODO(austin): We could be more aggressive
	// and detect pointers to unallocated objects
	// in allocated spans.
	printlock()
	print("runtime: pointer ", hex())
	if  != nil {
		 := .state.get()
		if  != mSpanInUse {
			print(" to unallocated span")
		} else {
			print(" to unused region of span")
		}
		print(" span.base()=", hex(.base()), " span.limit=", hex(.limit), " span.state=", )
	}
	print("\n")
	if  != 0 {
		print("runtime: found in object at *(", hex(), "+", hex(), ")\n")
		gcDumpObject("object", , )
	}
	getg().m.traceback = 2
	throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
}

// findObject returns the base address for the heap object containing
// the address p, the object's span, and the index of the object in s.
// If p does not point into a heap object, it returns base == 0.
//
// If p points is an invalid heap pointer and debug.invalidptr != 0,
// findObject panics.
//
// refBase and refOff optionally give the base address of the object
// in which the pointer p was found and the byte offset at which it
// was found. These are used for error reporting.
//
// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack.
// Since p is a uintptr, it would not be adjusted if the stack were to move.
//
// findObject should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/bytedance/sonic
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname findObject
//go:nosplit
func findObject(, ,  uintptr) ( uintptr,  *mspan,  uintptr) {
	 = spanOf()
	// If s is nil, the virtual address has never been part of the heap.
	// This pointer may be to some mmap'd region, so we allow it.
	if  == nil {
		if (GOARCH == "amd64" || GOARCH == "arm64") &&  == clobberdeadPtr && debug.invalidptr != 0 {
			// Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now,
			// as they are the only platform where compiler's clobberdead mode is
			// implemented. On these platforms clobberdeadPtr cannot be a valid address.
			badPointer(, , , )
		}
		return
	}
	// If p is a bad pointer, it may not be in s's bounds.
	//
	// Check s.state to synchronize with span initialization
	// before checking other fields. See also spanOfHeap.
	if  := .state.get();  != mSpanInUse ||  < .base() ||  >= .limit {
		// Pointers into stacks are also ok, the runtime manages these explicitly.
		if  == mSpanManual {
			return
		}
		// The following ensures that we are rigorous about what data
		// structures hold valid pointers.
		if debug.invalidptr != 0 {
			badPointer(, , , )
		}
		return
	}

	 = .objIndex()
	 = .base() + *.elemsize
	return
}

// reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok.
//
//go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr
func reflect_verifyNotInHeapPtr( uintptr) bool {
	// Conversion to a pointer is ok as long as findObject above does not call badPointer.
	// Since we're already promised that p doesn't point into the heap, just disallow heap
	// pointers and the special clobbered pointer.
	return spanOf() == nil &&  != clobberdeadPtr
}

const ptrBits = 8 * goarch.PtrSize

// bulkBarrierBitmap executes write barriers for copying from [src,
// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
// assumed to start maskOffset bytes into the data covered by the
// bitmap in bits (which may not be a multiple of 8).
//
// This is used by bulkBarrierPreWrite for writes to data and BSS.
//
//go:nosplit
func bulkBarrierBitmap(, , ,  uintptr,  *uint8) {
	 :=  / goarch.PtrSize
	 = addb(, /8)
	 := uint8(1) << ( % 8)

	 := &getg().m.p.ptr().wbBuf
	for  := uintptr(0);  < ;  += goarch.PtrSize {
		if  == 0 {
			 = addb(, 1)
			if * == 0 {
				// Skip 8 words.
				 += 7 * goarch.PtrSize
				continue
			}
			 = 1
		}
		if *& != 0 {
			 := (*uintptr)(unsafe.Pointer( + ))
			if  == 0 {
				 := .get1()
				[0] = *
			} else {
				 := (*uintptr)(unsafe.Pointer( + ))
				 := .get2()
				[0] = *
				[1] = *
			}
		}
		 <<= 1
	}
}

// typeBitsBulkBarrier executes a write barrier for every
// pointer that would be copied from [src, src+size) to [dst,
// dst+size) by a memmove using the type bitmap to locate those
// pointer slots.
//
// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
// dst, src, and size must be pointer-aligned.
// The type typ must have a plain bitmap, not a GC program.
// The only use of this function is in channel sends, and the
// 64 kB channel element limit takes care of this for us.
//
// Must not be preempted because it typically runs right before memmove,
// and the GC must observe them as an atomic action.
//
// Callers must perform cgo checks if goexperiment.CgoCheck2.
//
//go:nosplit
func typeBitsBulkBarrier( *_type, , ,  uintptr) {
	if  == nil {
		throw("runtime: typeBitsBulkBarrier without type")
	}
	if .Size_ !=  {
		println("runtime: typeBitsBulkBarrier with type ", toRType().string(), " of size ", .Size_, " but memory size", )
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if .Kind_&abi.KindGCProg != 0 {
		println("runtime: typeBitsBulkBarrier with type ", toRType().string(), " with GC prog")
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if !writeBarrier.enabled {
		return
	}
	 := .GCData
	 := &getg().m.p.ptr().wbBuf
	var  uint32
	for  := uintptr(0);  < .PtrBytes;  += goarch.PtrSize {
		if &(goarch.PtrSize*8-1) == 0 {
			 = uint32(*)
			 = addb(, 1)
		} else {
			 =  >> 1
		}
		if &1 != 0 {
			 := (*uintptr)(unsafe.Pointer( + ))
			 := (*uintptr)(unsafe.Pointer( + ))
			 := .get2()
			[0] = *
			[1] = *
		}
	}
}

// countAlloc returns the number of objects allocated in span s by
// scanning the mark bitmap.
func ( *mspan) () int {
	 := 0
	 := divRoundUp(uintptr(.nelems), 8)
	// Iterate over each 8-byte chunk and count allocations
	// with an intrinsic. Note that newMarkBits guarantees that
	// gcmarkBits will be 8-byte aligned, so we don't have to
	// worry about edge cases, irrelevant bits will simply be zero.
	for  := uintptr(0);  < ;  += 8 {
		// Extract 64 bits from the byte pointer and get a OnesCount.
		// Note that the unsafe cast here doesn't preserve endianness,
		// but that's OK. We only care about how many bits are 1, not
		// about the order we discover them in.
		 := *(*uint64)(unsafe.Pointer(.gcmarkBits.bytep()))
		 += sys.OnesCount64()
	}
	return 
}

// Read the bytes starting at the aligned pointer p into a uintptr.
// Read is little-endian.
func readUintptr( *byte) uintptr {
	 := *(*uintptr)(unsafe.Pointer())
	if goarch.BigEndian {
		if goarch.PtrSize == 8 {
			return uintptr(sys.Bswap64(uint64()))
		}
		return uintptr(sys.Bswap32(uint32()))
	}
	return 
}

var debugPtrmask struct {
	lock mutex
	data *byte
}

// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
// size the size of the region described by prog, in bytes.
// The resulting bitvector will have no more than size/goarch.PtrSize bits.
func progToPointerMask( *byte,  uintptr) bitvector {
	 := (/goarch.PtrSize + 7) / 8
	 := (*[1 << 30]byte)(persistentalloc(+1, 1, &memstats.buckhash_sys))[:+1]
	[len()-1] = 0xa1 // overflow check sentinel
	 = runGCProg(, &[0])
	if [len()-1] != 0xa1 {
		throw("progToPointerMask: overflow")
	}
	return bitvector{int32(), &[0]}
}

// Packed GC pointer bitmaps, aka GC programs.
//
// For large types containing arrays, the type information has a
// natural repetition that can be encoded to save space in the
// binary and in the memory representation of the type information.
//
// The encoding is a simple Lempel-Ziv style bytecode machine
// with the following instructions:
//
//	00000000: stop
//	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
//	10000000 n c: repeat the previous n bits c times; n, c are varints
//	1nnnnnnn c: repeat the previous n bits c times; c is a varint

// runGCProg returns the number of 1-bit entries written to memory.
func runGCProg(,  *byte) uintptr {
	 := 

	// Bits waiting to be written to memory.
	var  uintptr
	var  uintptr

	 := 
:
	for {
		// Flush accumulated full bytes.
		// The rest of the loop assumes that nbits <= 7.
		for ;  >= 8;  -= 8 {
			* = uint8()
			 = add1()
			 >>= 8
		}

		// Process one instruction.
		 := uintptr(*)
		 = add1()
		 :=  & 0x7F
		if &0x80 == 0 {
			// Literal bits; n == 0 means end of program.
			if  == 0 {
				// Program is over.
				break 
			}
			 :=  / 8
			for  := uintptr(0);  < ; ++ {
				 |= uintptr(*) << 
				 = add1()
				* = uint8()
				 = add1()
				 >>= 8
			}
			if  %= 8;  > 0 {
				 |= uintptr(*) << 
				 = add1()
				 += 
			}
			continue 
		}

		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
		if  == 0 {
			for  := uint(0); ;  += 7 {
				 := uintptr(*)
				 = add1()
				 |= ( & 0x7F) << 
				if &0x80 == 0 {
					break
				}
			}
		}

		// Count is encoded in a varint in the next bytes.
		 := uintptr(0)
		for  := uint(0); ;  += 7 {
			 := uintptr(*)
			 = add1()
			 |= ( & 0x7F) << 
			if &0x80 == 0 {
				break
			}
		}
		 *=  // now total number of bits to copy

		// If the number of bits being repeated is small, load them
		// into a register and use that register for the entire loop
		// instead of repeatedly reading from memory.
		// Handling fewer than 8 bits here makes the general loop simpler.
		// The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add
		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
		// it will not overflow.
		 := 
		const  = goarch.PtrSize*8 - 7
		if  <=  {
			// Start with bits in output buffer.
			 := 
			 := 

			// If we need more bits, fetch them from memory.
			 = subtract1()
			for  <  {
				 <<= 8
				 |= uintptr(*)
				 = subtract1()
				 += 8
			}

			// We started with the whole bit output buffer,
			// and then we loaded bits from whole bytes.
			// Either way, we might now have too many instead of too few.
			// Discard the extra.
			if  >  {
				 >>=  - 
				 = 
			}

			// Replicate pattern to at most maxBits.
			if  == 1 {
				// One bit being repeated.
				// If the bit is 1, make the pattern all 1s.
				// If the bit is 0, the pattern is already all 0s,
				// but we can claim that the number of bits
				// in the word is equal to the number we need (c),
				// because right shift of bits will zero fill.
				if  == 1 {
					 = 1<< - 1
					 = 
				} else {
					 = 
				}
			} else {
				 := 
				 := 
				if + <=  {
					// Double pattern until the whole uintptr is filled.
					for  <= goarch.PtrSize*8 {
						 |=  << 
						 += 
					}
					// Trim away incomplete copy of original pattern in high bits.
					// TODO(rsc): Replace with table lookup or loop on systems without divide?
					 =  /  * 
					 &= 1<< - 1
					 = 
					 = 
				}
			}

			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
			// Since pattern contains >8 bits, there will be full bytes to flush
			// on each iteration.
			for ;  >= ;  -=  {
				 |=  << 
				 += 
				for  >= 8 {
					* = uint8()
					 = add1()
					 >>= 8
					 -= 8
				}
			}

			// Add final fragment to bit buffer.
			if  > 0 {
				 &= 1<< - 1
				 |=  << 
				 += 
			}
			continue 
		}

		// Repeat; n too large to fit in a register.
		// Since nbits <= 7, we know the first few bytes of repeated data
		// are already written to memory.
		 :=  -  // n > nbits because n > maxBits and nbits <= 7
		// Leading src fragment.
		 = subtractb(, (+7)/8)
		if  :=  & 7;  != 0 {
			 |= uintptr(*) >> (8 - ) << 
			 = add1()
			 += 
			 -= 
		}
		// Main loop: load one byte, write another.
		// The bits are rotating through the bit buffer.
		for  :=  / 8;  > 0; -- {
			 |= uintptr(*) << 
			 = add1()
			* = uint8()
			 = add1()
			 >>= 8
		}
		// Final src fragment.
		if  %= 8;  > 0 {
			 |= (uintptr(*) & (1<< - 1)) << 
			 += 
		}
	}

	// Write any final bits out, using full-byte writes, even for the final byte.
	 := (uintptr(unsafe.Pointer())-uintptr(unsafe.Pointer()))*8 + 
	 += - & 7
	for ;  > 0;  -= 8 {
		* = uint8()
		 = add1()
		 >>= 8
	}
	return 
}

// materializeGCProg allocates space for the (1-bit) pointer bitmask
// for an object of size ptrdata.  Then it fills that space with the
// pointer bitmask specified by the program prog.
// The bitmask starts at s.startAddr.
// The result must be deallocated with dematerializeGCProg.
func materializeGCProg( uintptr,  *byte) *mspan {
	// Each word of ptrdata needs one bit in the bitmap.
	 := divRoundUp(, 8*goarch.PtrSize)
	// Compute the number of pages needed for bitmapBytes.
	 := divRoundUp(, pageSize)
	 := mheap_.allocManual(, spanAllocPtrScalarBits)
	runGCProg(addb(, 4), (*byte)(unsafe.Pointer(.startAddr)))
	return 
}
func dematerializeGCProg( *mspan) {
	mheap_.freeManual(, spanAllocPtrScalarBits)
}

func dumpGCProg( *byte) {
	 := 0
	for {
		 := *
		 = add1()
		if  == 0 {
			print("\t", , " end\n")
			break
		}
		if &0x80 == 0 {
			print("\t", , " lit ", , ":")
			 := int(+7) / 8
			for  := 0;  < ; ++ {
				print(" ", hex(*))
				 = add1()
			}
			print("\n")
			 += int()
		} else {
			 := int( &^ 0x80)
			if  == 0 {
				for  := uint(0); ;  += 7 {
					 := *
					 = add1()
					 |= int(&0x7f) << 
					if &0x80 == 0 {
						break
					}
				}
			}
			 := 0
			for  := uint(0); ;  += 7 {
				 := *
				 = add1()
				 |= int(&0x7f) << 
				if &0x80 == 0 {
					break
				}
			}
			print("\t", , " repeat ", , " × ", , "\n")
			 +=  * 
		}
	}
}

// Testing.

// reflect_gcbits returns the GC type info for x, for testing.
// The result is the bitmap entries (0 or 1), one entry per byte.
//
//go:linkname reflect_gcbits reflect.gcbits
func reflect_gcbits( any) []byte {
	return getgcmask()
}

// Returns GC type info for the pointer stored in ep for testing.
// If ep points to the stack, only static live information will be returned
// (i.e. not for objects which are only dynamically live stack objects).
func getgcmask( any) ( []byte) {
	 := *efaceOf(&)
	 := .data
	 := ._type

	var  *_type
	if .Kind_&abi.KindMask != abi.Pointer {
		throw("bad argument to getgcmask: expected type to be a pointer to the value type whose mask is being queried")
	}
	 = (*ptrtype)(unsafe.Pointer()).Elem

	// data or bss
	for ,  := range activeModules() {
		// data
		if .data <= uintptr() && uintptr() < .edata {
			 := .gcdatamask.bytedata
			 := .Size_
			 = make([]byte, /goarch.PtrSize)
			for  := uintptr(0);  < ;  += goarch.PtrSize {
				 := (uintptr() +  - .data) / goarch.PtrSize
				[/goarch.PtrSize] = (*addb(, /8) >> ( % 8)) & 1
			}
			return
		}

		// bss
		if .bss <= uintptr() && uintptr() < .ebss {
			 := .gcbssmask.bytedata
			 := .Size_
			 = make([]byte, /goarch.PtrSize)
			for  := uintptr(0);  < ;  += goarch.PtrSize {
				 := (uintptr() +  - .bss) / goarch.PtrSize
				[/goarch.PtrSize] = (*addb(, /8) >> ( % 8)) & 1
			}
			return
		}
	}

	// heap
	if , ,  := findObject(uintptr(), 0, 0);  != 0 {
		if .spanclass.noscan() {
			return nil
		}
		 :=  + .elemsize

		// Move the base up to the iterator's start, because
		// we want to hide evidence of a malloc header from the
		// caller.
		 := .typePointersOfUnchecked()
		 = .addr

		// Unroll the full bitmap the GC would actually observe.
		 := make([]byte, (-)/goarch.PtrSize)
		for {
			var  uintptr
			if ,  = .next();  == 0 {
				break
			}
			[(-)/goarch.PtrSize] = 1
		}

		// Double-check that every part of the ptr/scalar we're not
		// showing the caller is zeroed. This keeps us honest that
		// that information is actually irrelevant.
		for  := ;  < .elemsize; ++ {
			if *(*byte)(unsafe.Pointer()) != 0 {
				throw("found non-zeroed tail of allocation")
			}
		}

		// Callers (and a check we're about to run) expects this mask
		// to end at the last pointer.
		for len() > 0 && [len()-1] == 0 {
			 = [:len()-1]
		}

		if .Kind_&abi.KindGCProg == 0 {
			// Unroll again, but this time from the type information.
			 := make([]byte, (-)/goarch.PtrSize)
			 = .typePointersOfType(, )
			for {
				var  uintptr
				if ,  = .next();  == 0 {
					break
				}
				[(-)/goarch.PtrSize] = 1
			}

			// Validate that the prefix of maskFromType is equal to
			// maskFromHeap. maskFromType may contain more pointers than
			// maskFromHeap produces because maskFromHeap may be able to
			// get exact type information for certain classes of objects.
			// With maskFromType, we're always just tiling the type bitmap
			// through to the elemsize.
			//
			// It's OK if maskFromType has pointers in elemsize that extend
			// past the actual populated space; we checked above that all
			// that space is zeroed, so just the GC will just see nil pointers.
			 := false
			for  := range  {
				if [] != [] {
					 = true
					break
				}
			}

			if  {
				print("runtime: heap mask=")
				for ,  := range  {
					print()
				}
				println()
				print("runtime: type mask=")
				for ,  := range  {
					print()
				}
				println()
				print("runtime: type=", toRType().string(), "\n")
				throw("found two different masks from two different methods")
			}
		}

		// Select the heap mask to return. We may not have a type mask.
		 = 

		// Make sure we keep ep alive. We may have stopped referencing
		// ep's data pointer sometime before this point and it's possible
		// for that memory to get freed.
		KeepAlive()
		return
	}

	// stack
	if  := getg(); .m.curg.stack.lo <= uintptr() && uintptr() < .m.curg.stack.hi {
		 := false
		var  unwinder
		for .initAt(.m.curg.sched.pc, .m.curg.sched.sp, 0, .m.curg, 0); .valid(); .next() {
			if .frame.sp <= uintptr() && uintptr() < .frame.varp {
				 = true
				break
			}
		}
		if  {
			, ,  := .frame.getStackMap(false)
			if .n == 0 {
				return
			}
			 := uintptr(.n) * goarch.PtrSize
			 := (*ptrtype)(unsafe.Pointer()).Elem.Size_
			 = make([]byte, /goarch.PtrSize)
			for  := uintptr(0);  < ;  += goarch.PtrSize {
				 := (uintptr() +  - .frame.varp + ) / goarch.PtrSize
				[/goarch.PtrSize] = .ptrbit()
			}
		}
		return
	}

	// otherwise, not something the GC knows about.
	// possibly read-only data, like malloc(0).
	// must not have pointers
	return
}