// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
	
	
	
	
	
	
	
	
	
	
	
)

// verifyHandshakeSignature verifies a signature against pre-hashed
// (if required) handshake contents.
func verifyHandshakeSignature( uint8,  crypto.PublicKey,  crypto.Hash, ,  []byte) error {
	switch  {
	case signatureECDSA:
		,  := .(*ecdsa.PublicKey)
		if ! {
			return fmt.Errorf("expected an ECDSA public key, got %T", )
		}
		if !ecdsa.VerifyASN1(, , ) {
			return errors.New("ECDSA verification failure")
		}
	case signatureEd25519:
		,  := .(ed25519.PublicKey)
		if ! {
			return fmt.Errorf("expected an Ed25519 public key, got %T", )
		}
		if !ed25519.Verify(, , ) {
			return errors.New("Ed25519 verification failure")
		}
	case signaturePKCS1v15:
		,  := .(*rsa.PublicKey)
		if ! {
			return fmt.Errorf("expected an RSA public key, got %T", )
		}
		if  := rsa.VerifyPKCS1v15(, , , );  != nil {
			return 
		}
	case signatureRSAPSS:
		,  := .(*rsa.PublicKey)
		if ! {
			return fmt.Errorf("expected an RSA public key, got %T", )
		}
		 := &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}
		if  := rsa.VerifyPSS(, , , , );  != nil {
			return 
		}
	default:
		return errors.New("internal error: unknown signature type")
	}
	return nil
}

const (
	serverSignatureContext = "TLS 1.3, server CertificateVerify\x00"
	clientSignatureContext = "TLS 1.3, client CertificateVerify\x00"
)

var signaturePadding = []byte{
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
	0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
}

// signedMessage returns the pre-hashed (if necessary) message to be signed by
// certificate keys in TLS 1.3. See RFC 8446, Section 4.4.3.
func signedMessage( crypto.Hash,  string,  hash.Hash) []byte {
	if  == directSigning {
		 := &bytes.Buffer{}
		.Write(signaturePadding)
		io.WriteString(, )
		.Write(.Sum(nil))
		return .Bytes()
	}
	 := .New()
	.Write(signaturePadding)
	io.WriteString(, )
	.Write(.Sum(nil))
	return .Sum(nil)
}

// typeAndHashFromSignatureScheme returns the corresponding signature type and
// crypto.Hash for a given TLS SignatureScheme.
func typeAndHashFromSignatureScheme( SignatureScheme) ( uint8,  crypto.Hash,  error) {
	switch  {
	case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
		 = signaturePKCS1v15
	case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
		 = signatureRSAPSS
	case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
		 = signatureECDSA
	case Ed25519:
		 = signatureEd25519
	default:
		return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", )
	}
	switch  {
	case PKCS1WithSHA1, ECDSAWithSHA1:
		 = crypto.SHA1
	case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256:
		 = crypto.SHA256
	case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384:
		 = crypto.SHA384
	case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512:
		 = crypto.SHA512
	case Ed25519:
		 = directSigning
	default:
		return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", )
	}
	return , , nil
}

// legacyTypeAndHashFromPublicKey returns the fixed signature type and crypto.Hash for
// a given public key used with TLS 1.0 and 1.1, before the introduction of
// signature algorithm negotiation.
func legacyTypeAndHashFromPublicKey( crypto.PublicKey) ( uint8,  crypto.Hash,  error) {
	switch .(type) {
	case *rsa.PublicKey:
		return signaturePKCS1v15, crypto.MD5SHA1, nil
	case *ecdsa.PublicKey:
		return signatureECDSA, crypto.SHA1, nil
	case ed25519.PublicKey:
		// RFC 8422 specifies support for Ed25519 in TLS 1.0 and 1.1,
		// but it requires holding on to a handshake transcript to do a
		// full signature, and not even OpenSSL bothers with the
		// complexity, so we can't even test it properly.
		return 0, 0, fmt.Errorf("tls: Ed25519 public keys are not supported before TLS 1.2")
	default:
		return 0, 0, fmt.Errorf("tls: unsupported public key: %T", )
	}
}

var rsaSignatureSchemes = []struct {
	scheme          SignatureScheme
	minModulusBytes int
	maxVersion      uint16
}{
	// RSA-PSS is used with PSSSaltLengthEqualsHash, and requires
	//    emLen >= hLen + sLen + 2
	{PSSWithSHA256, crypto.SHA256.Size()*2 + 2, VersionTLS13},
	{PSSWithSHA384, crypto.SHA384.Size()*2 + 2, VersionTLS13},
	{PSSWithSHA512, crypto.SHA512.Size()*2 + 2, VersionTLS13},
	// PKCS #1 v1.5 uses prefixes from hashPrefixes in crypto/rsa, and requires
	//    emLen >= len(prefix) + hLen + 11
	// TLS 1.3 dropped support for PKCS #1 v1.5 in favor of RSA-PSS.
	{PKCS1WithSHA256, 19 + crypto.SHA256.Size() + 11, VersionTLS12},
	{PKCS1WithSHA384, 19 + crypto.SHA384.Size() + 11, VersionTLS12},
	{PKCS1WithSHA512, 19 + crypto.SHA512.Size() + 11, VersionTLS12},
	{PKCS1WithSHA1, 15 + crypto.SHA1.Size() + 11, VersionTLS12},
}

// signatureSchemesForCertificate returns the list of supported SignatureSchemes
// for a given certificate, based on the public key and the protocol version,
// and optionally filtered by its explicit SupportedSignatureAlgorithms.
//
// This function must be kept in sync with supportedSignatureAlgorithms.
// FIPS filtering is applied in the caller, selectSignatureScheme.
func signatureSchemesForCertificate( uint16,  *Certificate) []SignatureScheme {
	,  := .PrivateKey.(crypto.Signer)
	if ! {
		return nil
	}

	var  []SignatureScheme
	switch pub := .Public().(type) {
	case *ecdsa.PublicKey:
		if  != VersionTLS13 {
			// In TLS 1.2 and earlier, ECDSA algorithms are not
			// constrained to a single curve.
			 = []SignatureScheme{
				ECDSAWithP256AndSHA256,
				ECDSAWithP384AndSHA384,
				ECDSAWithP521AndSHA512,
				ECDSAWithSHA1,
			}
			break
		}
		switch .Curve {
		case elliptic.P256():
			 = []SignatureScheme{ECDSAWithP256AndSHA256}
		case elliptic.P384():
			 = []SignatureScheme{ECDSAWithP384AndSHA384}
		case elliptic.P521():
			 = []SignatureScheme{ECDSAWithP521AndSHA512}
		default:
			return nil
		}
	case *rsa.PublicKey:
		 := .Size()
		 = make([]SignatureScheme, 0, len(rsaSignatureSchemes))
		for ,  := range rsaSignatureSchemes {
			if  >= .minModulusBytes &&  <= .maxVersion {
				 = append(, .scheme)
			}
		}
	case ed25519.PublicKey:
		 = []SignatureScheme{Ed25519}
	default:
		return nil
	}

	if .SupportedSignatureAlgorithms != nil {
		var  []SignatureScheme
		for ,  := range  {
			if isSupportedSignatureAlgorithm(, .SupportedSignatureAlgorithms) {
				 = append(, )
			}
		}
		return 
	}
	return 
}

// selectSignatureScheme picks a SignatureScheme from the peer's preference list
// that works with the selected certificate. It's only called for protocol
// versions that support signature algorithms, so TLS 1.2 and 1.3.
func selectSignatureScheme( uint16,  *Certificate,  []SignatureScheme) (SignatureScheme, error) {
	 := signatureSchemesForCertificate(, )
	if len() == 0 {
		return 0, unsupportedCertificateError()
	}
	if len() == 0 &&  == VersionTLS12 {
		// For TLS 1.2, if the client didn't send signature_algorithms then we
		// can assume that it supports SHA1. See RFC 5246, Section 7.4.1.4.1.
		 = []SignatureScheme{PKCS1WithSHA1, ECDSAWithSHA1}
	}
	// Pick signature scheme in the peer's preference order, as our
	// preference order is not configurable.
	for ,  := range  {
		if fips140tls.Required() && !isSupportedSignatureAlgorithm(, defaultSupportedSignatureAlgorithmsFIPS) {
			continue
		}
		if isSupportedSignatureAlgorithm(, ) {
			return , nil
		}
	}
	return 0, errors.New("tls: peer doesn't support any of the certificate's signature algorithms")
}

// unsupportedCertificateError returns a helpful error for certificates with
// an unsupported private key.
func unsupportedCertificateError( *Certificate) error {
	switch .PrivateKey.(type) {
	case rsa.PrivateKey, ecdsa.PrivateKey:
		return fmt.Errorf("tls: unsupported certificate: private key is %T, expected *%T",
			.PrivateKey, .PrivateKey)
	case *ed25519.PrivateKey:
		return fmt.Errorf("tls: unsupported certificate: private key is *ed25519.PrivateKey, expected ed25519.PrivateKey")
	}

	,  := .PrivateKey.(crypto.Signer)
	if ! {
		return fmt.Errorf("tls: certificate private key (%T) does not implement crypto.Signer",
			.PrivateKey)
	}

	switch pub := .Public().(type) {
	case *ecdsa.PublicKey:
		switch .Curve {
		case elliptic.P256():
		case elliptic.P384():
		case elliptic.P521():
		default:
			return fmt.Errorf("tls: unsupported certificate curve (%s)", .Curve.Params().Name)
		}
	case *rsa.PublicKey:
		return fmt.Errorf("tls: certificate RSA key size too small for supported signature algorithms")
	case ed25519.PublicKey:
	default:
		return fmt.Errorf("tls: unsupported certificate key (%T)", )
	}

	if .SupportedSignatureAlgorithms != nil {
		return fmt.Errorf("tls: peer doesn't support the certificate custom signature algorithms")
	}

	return fmt.Errorf("tls: internal error: unsupported key (%T)", .PrivateKey)
}