// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Code to check that pointer writes follow the cgo rules.
// These functions are invoked when GOEXPERIMENT=cgocheck2 is enabled.

package runtime

import (
	
	
	
)

const cgoWriteBarrierFail = "unpinned Go pointer stored into non-Go memory"

// cgoCheckPtrWrite is called whenever a pointer is stored into memory.
// It throws if the program is storing an unpinned Go pointer into non-Go
// memory.
//
// This is called from generated code when GOEXPERIMENT=cgocheck2 is enabled.
//
//go:nosplit
//go:nowritebarrier
func cgoCheckPtrWrite( *unsafe.Pointer,  unsafe.Pointer) {
	if !mainStarted {
		// Something early in startup hates this function.
		// Don't start doing any actual checking until the
		// runtime has set itself up.
		return
	}
	if !cgoIsGoPointer() {
		return
	}
	if cgoIsGoPointer(unsafe.Pointer()) {
		return
	}

	// If we are running on the system stack then dst might be an
	// address on the stack, which is OK.
	 := getg()
	if  == .m.g0 ||  == .m.gsignal {
		return
	}

	// Allocating memory can write to various mfixalloc structs
	// that look like they are non-Go memory.
	if .m.mallocing != 0 {
		return
	}

	// If the object is pinned, it's safe to store it in C memory. The GC
	// ensures it will not be moved or freed.
	if isPinned() {
		return
	}

	// It's OK if writing to memory allocated by persistentalloc.
	// Do this check last because it is more expensive and rarely true.
	// If it is false the expense doesn't matter since we are crashing.
	if inPersistentAlloc(uintptr(unsafe.Pointer())) {
		return
	}

	systemstack(func() {
		println("write of unpinned Go pointer", hex(uintptr()), "to non-Go memory", hex(uintptr(unsafe.Pointer())))
		throw(cgoWriteBarrierFail)
	})
}

// cgoCheckMemmove is called when moving a block of memory.
// It throws if the program is copying a block that contains an unpinned Go
// pointer into non-Go memory.
//
// This is called from generated code when GOEXPERIMENT=cgocheck2 is enabled.
//
//go:nosplit
//go:nowritebarrier
func cgoCheckMemmove( *_type, ,  unsafe.Pointer) {
	cgoCheckMemmove2(, , , 0, .Size_)
}

// cgoCheckMemmove2 is called when moving a block of memory.
// dst and src point off bytes into the value to copy.
// size is the number of bytes to copy.
// It throws if the program is copying a block that contains an unpinned Go
// pointer into non-Go memory.
//
//go:nosplit
//go:nowritebarrier
func cgoCheckMemmove2( *_type, ,  unsafe.Pointer, ,  uintptr) {
	if .PtrBytes == 0 {
		return
	}
	if !cgoIsGoPointer() {
		return
	}
	if cgoIsGoPointer() {
		return
	}
	cgoCheckTypedBlock(, , , )
}

// cgoCheckSliceCopy is called when copying n elements of a slice.
// src and dst are pointers to the first element of the slice.
// typ is the element type of the slice.
// It throws if the program is copying slice elements that contain unpinned Go
// pointers into non-Go memory.
//
//go:nosplit
//go:nowritebarrier
func cgoCheckSliceCopy( *_type, ,  unsafe.Pointer,  int) {
	if .PtrBytes == 0 {
		return
	}
	if !cgoIsGoPointer() {
		return
	}
	if cgoIsGoPointer() {
		return
	}
	 := 
	for  := 0;  < ; ++ {
		cgoCheckTypedBlock(, , 0, .Size_)
		 = add(, .Size_)
	}
}

// cgoCheckTypedBlock checks the block of memory at src, for up to size bytes,
// and throws if it finds an unpinned Go pointer. The type of the memory is typ,
// and src is off bytes into that type.
//
//go:nosplit
//go:nowritebarrier
func cgoCheckTypedBlock( *_type,  unsafe.Pointer, ,  uintptr) {
	// Anything past typ.PtrBytes is not a pointer.
	if .PtrBytes <=  {
		return
	}
	if  := .PtrBytes - ;  >  {
		 = 
	}

	if .Kind_&kindGCProg == 0 {
		cgoCheckBits(, .GCData, , )
		return
	}

	// The type has a GC program. Try to find GC bits somewhere else.
	for ,  := range activeModules() {
		if cgoInRange(, .data, .edata) {
			 := uintptr() - .data
			cgoCheckBits(add(, -), .gcdatamask.bytedata, +, )
			return
		}
		if cgoInRange(, .bss, .ebss) {
			 := uintptr() - .bss
			cgoCheckBits(add(, -), .gcbssmask.bytedata, +, )
			return
		}
	}

	 := spanOfUnchecked(uintptr())
	if .state.get() == mSpanManual {
		// There are no heap bits for value stored on the stack.
		// For a channel receive src might be on the stack of some
		// other goroutine, so we can't unwind the stack even if
		// we wanted to.
		// We can't expand the GC program without extra storage
		// space we can't easily get.
		// Fortunately we have the type information.
		systemstack(func() {
			cgoCheckUsingType(, , , )
		})
		return
	}

	// src must be in the regular heap.
	if goexperiment.AllocHeaders {
		 := .typePointersOf(uintptr(), )
		for {
			var  uintptr
			if ,  = .next(uintptr() + );  == 0 {
				break
			}
			 := *(*unsafe.Pointer)(unsafe.Pointer())
			if cgoIsGoPointer() && !isPinned() {
				throw(cgoWriteBarrierFail)
			}
		}
	} else {
		 := heapBitsForAddr(uintptr(), )
		for {
			var  uintptr
			if ,  = .next();  == 0 {
				break
			}
			 := *(*unsafe.Pointer)(unsafe.Pointer())
			if cgoIsGoPointer() && !isPinned() {
				throw(cgoWriteBarrierFail)
			}
		}
	}
}

// cgoCheckBits checks the block of memory at src, for up to size
// bytes, and throws if it finds an unpinned Go pointer. The gcbits mark each
// pointer value. The src pointer is off bytes into the gcbits.
//
//go:nosplit
//go:nowritebarrier
func cgoCheckBits( unsafe.Pointer,  *byte, ,  uintptr) {
	 :=  / goarch.PtrSize / 8
	 :=  * goarch.PtrSize * 8
	 := addb(, )
	 = add(, )
	 -= 
	 += 
	var  uint32
	for  := uintptr(0);  < ;  += goarch.PtrSize {
		if &(goarch.PtrSize*8-1) == 0 {
			 = uint32(*)
			 = addb(, 1)
		} else {
			 >>= 1
		}
		if  > 0 {
			 -= goarch.PtrSize
		} else {
			if &1 != 0 {
				 := *(*unsafe.Pointer)(add(, ))
				if cgoIsGoPointer() && !isPinned() {
					throw(cgoWriteBarrierFail)
				}
			}
		}
	}
}

// cgoCheckUsingType is like cgoCheckTypedBlock, but is a last ditch
// fall back to look for pointers in src using the type information.
// We only use this when looking at a value on the stack when the type
// uses a GC program, because otherwise it's more efficient to use the
// GC bits. This is called on the system stack.
//
//go:nowritebarrier
//go:systemstack
func cgoCheckUsingType( *_type,  unsafe.Pointer, ,  uintptr) {
	if .PtrBytes == 0 {
		return
	}

	// Anything past typ.PtrBytes is not a pointer.
	if .PtrBytes <=  {
		return
	}
	if  := .PtrBytes - ;  >  {
		 = 
	}

	if .Kind_&kindGCProg == 0 {
		cgoCheckBits(, .GCData, , )
		return
	}
	switch .Kind_ & kindMask {
	default:
		throw("can't happen")
	case kindArray:
		 := (*arraytype)(unsafe.Pointer())
		for  := uintptr(0);  < .Len; ++ {
			if  < .Elem.Size_ {
				(.Elem, , , )
			}
			 = add(, .Elem.Size_)
			 := 
			if  > .Elem.Size_ {
				 = .Elem.Size_
			}
			 := .Elem.Size_ - 
			 -= 
			if  <=  {
				return
			}
			 -= 
		}
	case kindStruct:
		 := (*structtype)(unsafe.Pointer())
		for ,  := range .Fields {
			if  < .Typ.Size_ {
				(.Typ, , , )
			}
			 = add(, .Typ.Size_)
			 := 
			if  > .Typ.Size_ {
				 = .Typ.Size_
			}
			 := .Typ.Size_ - 
			 -= 
			if  <=  {
				return
			}
			 -= 
		}
	}
}