// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.
// Package pprof writes runtime profiling data in the format expected// by the pprof visualization tool.//// # Profiling a Go program//// The first step to profiling a Go program is to enable profiling.// Support for profiling benchmarks built with the standard testing// package is built into go test. For example, the following command// runs benchmarks in the current directory and writes the CPU and// memory profiles to cpu.prof and mem.prof://// go test -cpuprofile cpu.prof -memprofile mem.prof -bench .//// To add equivalent profiling support to a standalone program, add// code like the following to your main function://// var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")// var memprofile = flag.String("memprofile", "", "write memory profile to `file`")//// func main() {// flag.Parse()// if *cpuprofile != "" {// f, err := os.Create(*cpuprofile)// if err != nil {// log.Fatal("could not create CPU profile: ", err)// }// defer f.Close() // error handling omitted for example// if err := pprof.StartCPUProfile(f); err != nil {// log.Fatal("could not start CPU profile: ", err)// }// defer pprof.StopCPUProfile()// }//// // ... rest of the program ...//// if *memprofile != "" {// f, err := os.Create(*memprofile)// if err != nil {// log.Fatal("could not create memory profile: ", err)// }// defer f.Close() // error handling omitted for example// runtime.GC() // get up-to-date statistics// // Lookup("allocs") creates a profile similar to go test -memprofile.// // Alternatively, use Lookup("heap") for a profile// // that has inuse_space as the default index.// if err := pprof.Lookup("allocs").WriteTo(f, 0); err != nil {// log.Fatal("could not write memory profile: ", err)// }// }// }//// There is also a standard HTTP interface to profiling data. Adding// the following line will install handlers under the /debug/pprof/// URL to download live profiles://// import _ "net/http/pprof"//// See the net/http/pprof package for more details.//// Profiles can then be visualized with the pprof tool://// go tool pprof cpu.prof//// There are many commands available from the pprof command line.// Commonly used commands include "top", which prints a summary of the// top program hot-spots, and "web", which opens an interactive graph// of hot-spots and their call graphs. Use "help" for information on// all pprof commands.//// For more information about pprof, see// https://github.com/google/pprof/blob/main/doc/README.md.
package pprofimport ()// BUG(rsc): Profiles are only as good as the kernel support used to generate them.// See https://golang.org/issue/13841 for details about known problems.// A Profile is a collection of stack traces showing the call sequences// that led to instances of a particular event, such as allocation.// Packages can create and maintain their own profiles; the most common// use is for tracking resources that must be explicitly closed, such as files// or network connections.//// A Profile's methods can be called from multiple goroutines simultaneously.//// Each Profile has a unique name. A few profiles are predefined://// goroutine - stack traces of all current goroutines// heap - a sampling of memory allocations of live objects// allocs - a sampling of all past memory allocations// threadcreate - stack traces that led to the creation of new OS threads// block - stack traces that led to blocking on synchronization primitives// mutex - stack traces of holders of contended mutexes//// These predefined profiles maintain themselves and panic on an explicit// [Profile.Add] or [Profile.Remove] method call.//// The CPU profile is not available as a Profile. It has a special API,// the [StartCPUProfile] and [StopCPUProfile] functions, because it streams// output to a writer during profiling.//// # Heap profile//// The heap profile reports statistics as of the most recently completed// garbage collection; it elides more recent allocation to avoid skewing// the profile away from live data and toward garbage.// If there has been no garbage collection at all, the heap profile reports// all known allocations. This exception helps mainly in programs running// without garbage collection enabled, usually for debugging purposes.//// The heap profile tracks both the allocation sites for all live objects in// the application memory and for all objects allocated since the program start.// Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects// flags select which to display, defaulting to -inuse_space (live objects,// scaled by size).//// # Allocs profile//// The allocs profile is the same as the heap profile but changes the default// pprof display to -alloc_space, the total number of bytes allocated since// the program began (including garbage-collected bytes).//// # Block profile//// The block profile tracks time spent blocked on synchronization primitives,// such as [sync.Mutex], [sync.RWMutex], [sync.WaitGroup], [sync.Cond], and// channel send/receive/select.//// Stack traces correspond to the location that blocked (for example,// [sync.Mutex.Lock]).//// Sample values correspond to cumulative time spent blocked at that stack// trace, subject to time-based sampling specified by// [runtime.SetBlockProfileRate].//// # Mutex profile//// The mutex profile tracks contention on mutexes, such as [sync.Mutex],// [sync.RWMutex], and runtime-internal locks.//// Stack traces correspond to the end of the critical section causing// contention. For example, a lock held for a long time while other goroutines// are waiting to acquire the lock will report contention when the lock is// finally unlocked (that is, at [sync.Mutex.Unlock]).//// Sample values correspond to the approximate cumulative time other goroutines// spent blocked waiting for the lock, subject to event-based sampling// specified by [runtime.SetMutexProfileFraction]. For example, if a caller// holds a lock for 1s while 5 other goroutines are waiting for the entire// second to acquire the lock, its unlock call stack will report 5s of// contention.typeProfilestruct { name string mu sync.Mutex m map[any][]uintptr count func() int write func(io.Writer, int) error}// profiles records all registered profiles.var profiles struct { mu sync.Mutex m map[string]*Profile}var goroutineProfile = &Profile{name: "goroutine",count: countGoroutine,write: writeGoroutine,}var threadcreateProfile = &Profile{name: "threadcreate",count: countThreadCreate,write: writeThreadCreate,}var heapProfile = &Profile{name: "heap",count: countHeap,write: writeHeap,}var allocsProfile = &Profile{name: "allocs",count: countHeap, // identical to heap profilewrite: writeAlloc,}var blockProfile = &Profile{name: "block",count: countBlock,write: writeBlock,}var mutexProfile = &Profile{name: "mutex",count: countMutex,write: writeMutex,}func lockProfiles() {profiles.mu.Lock()ifprofiles.m == nil {// Initial built-in profiles.profiles.m = map[string]*Profile{"goroutine": goroutineProfile,"threadcreate": threadcreateProfile,"heap": heapProfile,"allocs": allocsProfile,"block": blockProfile,"mutex": mutexProfile, } }}func unlockProfiles() {profiles.mu.Unlock()}// NewProfile creates a new profile with the given name.// If a profile with that name already exists, NewProfile panics.// The convention is to use a 'import/path.' prefix to create// separate name spaces for each package.// For compatibility with various tools that read pprof data,// profile names should not contain spaces.func ( string) *Profile {lockProfiles()deferunlockProfiles()if == "" {panic("pprof: NewProfile with empty name") }ifprofiles.m[] != nil {panic("pprof: NewProfile name already in use: " + ) } := &Profile{name: ,m: map[any][]uintptr{}, }profiles.m[] = return}// Lookup returns the profile with the given name, or nil if no such profile exists.func ( string) *Profile {lockProfiles()deferunlockProfiles()returnprofiles.m[]}// Profiles returns a slice of all the known profiles, sorted by name.func () []*Profile {lockProfiles()deferunlockProfiles() := make([]*Profile, 0, len(profiles.m))for , := rangeprofiles.m { = append(, ) }slices.SortFunc(, func(, *Profile) int {returnstrings.Compare(.name, .name) })return}// Name returns this profile's name, which can be passed to [Lookup] to reobtain the profile.func ( *Profile) () string {return .name}// Count returns the number of execution stacks currently in the profile.func ( *Profile) () int { .mu.Lock()defer .mu.Unlock()if .count != nil {return .count() }returnlen(.m)}// Add adds the current execution stack to the profile, associated with value.// Add stores value in an internal map, so value must be suitable for use as// a map key and will not be garbage collected until the corresponding// call to [Profile.Remove]. Add panics if the profile already contains a stack for value.//// The skip parameter has the same meaning as [runtime.Caller]'s skip// and controls where the stack trace begins. Passing skip=0 begins the// trace in the function calling Add. For example, given this// execution stack://// Add// called from rpc.NewClient// called from mypkg.Run// called from main.main//// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.func ( *Profile) ( any, int) {if .name == "" {panic("pprof: use of uninitialized Profile") }if .write != nil {panic("pprof: Add called on built-in Profile " + .name) } := make([]uintptr, 32) := runtime.Callers(+1, [:]) = [:]iflen() == 0 {// The value for skip is too large, and there's no stack trace to record. = []uintptr{abi.FuncPCABIInternal(lostProfileEvent)} } .mu.Lock()defer .mu.Unlock()if .m[] != nil {panic("pprof: Profile.Add of duplicate value") } .m[] = }// Remove removes the execution stack associated with value from the profile.// It is a no-op if the value is not in the profile.func ( *Profile) ( any) { .mu.Lock()defer .mu.Unlock()delete(.m, )}// WriteTo writes a pprof-formatted snapshot of the profile to w.// If a write to w returns an error, WriteTo returns that error.// Otherwise, WriteTo returns nil.//// The debug parameter enables additional output.// Passing debug=0 writes the gzip-compressed protocol buffer described// in https://github.com/google/pprof/tree/main/proto#overview.// Passing debug=1 writes the legacy text format with comments// translating addresses to function names and line numbers, so that a// programmer can read the profile without tools.//// The predefined profiles may assign meaning to other debug values;// for example, when printing the "goroutine" profile, debug=2 means to// print the goroutine stacks in the same form that a Go program uses// when dying due to an unrecovered panic.func ( *Profile) ( io.Writer, int) error {if .name == "" {panic("pprof: use of zero Profile") }if .write != nil {return .write(, ) }// Obtain consistent snapshot under lock; then process without lock. .mu.Lock() := make([][]uintptr, 0, len(.m))for , := range .m { = append(, ) } .mu.Unlock()// Map order is non-deterministic; make output deterministic.slices.SortFunc(, slices.Compare)returnprintCountProfile(, , .name, stackProfile())}type stackProfile [][]uintptrfunc ( stackProfile) () int { returnlen() }func ( stackProfile) ( int) []uintptr { return [] }func ( stackProfile) ( int) *labelMap { returnnil }// A countProfile is a set of stack traces to be printed as counts// grouped by stack trace. There are multiple implementations:// all that matters is that we can find out how many traces there are// and obtain each trace in turn.type countProfile interface { Len() int Stack(i int) []uintptr Label(i int) *labelMap}// expandInlinedFrames copies the call stack from pcs into dst, expanding any// PCs corresponding to inlined calls into the corresponding PCs for the inlined// functions. Returns the number of frames copied to dst.func expandInlinedFrames(, []uintptr) int { := runtime.CallersFrames()varintfor < len() { , := .Next()// f.PC is a "call PC", but later consumers will expect // "return PCs" [] = .PC + 1 ++if ! {break } }return}// printCountCycleProfile outputs block profile records (for block or mutex profiles)// as the pprof-proto format output. Translations from cycle count to time duration// are done because The proto expects count and time (nanoseconds) instead of count// and the number of cycles for block, contention profiles.func printCountCycleProfile( io.Writer, , string, []profilerecord.BlockProfileRecord) error {// Output profile in protobuf form. := newProfileBuilder() .pbValueType(tagProfile_PeriodType, , "count") .pb.int64Opt(tagProfile_Period, 1) .pbValueType(tagProfile_SampleType, , "count") .pbValueType(tagProfile_SampleType, , "nanoseconds") := float64(pprof_cyclesPerSecond()) / 1e9 := []int64{0, 0}var []uint64 := pprof_makeProfStack()for , := range { [0] = .Count [1] = int64(float64(.Cycles) / )// For count profiles, all stack addresses are // return PCs, which is what appendLocsForStack expects. := expandInlinedFrames(, .Stack) = .appendLocsForStack([:0], [:]) .pbSample(, , nil) }return .build()}// printCountProfile prints a countProfile at the specified debug level.// The profile will be in compressed proto format unless debug is nonzero.func printCountProfile( io.Writer, int, string, countProfile) error {// Build count of each stack.varstrings.Builder := func( []uintptr, *labelMap) string { .Reset()fmt.Fprintf(&, "@")for , := range {fmt.Fprintf(&, " %#x", ) }if != nil { .WriteString("\n# labels: ") .WriteString(.String()) }return .String() } := map[string]int{} := map[string]int{}var []string := .Len()for := 0; < ; ++ { := (.Stack(), .Label())if [] == 0 { [] = = append(, ) } []++ }sort.Sort(&keysByCount{, })if > 0 {// Print debug profile in legacy format := tabwriter.NewWriter(, 1, 8, 1, '\t', 0)fmt.Fprintf(, "%s profile: total %d\n", , .Len())for , := range {fmt.Fprintf(, "%d %s\n", [], )printStackRecord(, .Stack([]), false) }return .Flush() }// Output profile in protobuf form. := newProfileBuilder() .pbValueType(tagProfile_PeriodType, , "count") .pb.int64Opt(tagProfile_Period, 1) .pbValueType(tagProfile_SampleType, , "count") := []int64{0}var []uint64for , := range { [0] = int64([])// For count profiles, all stack addresses are // return PCs, which is what appendLocsForStack expects. = .appendLocsForStack([:0], .Stack([])) := []varfunc()if .Label() != nil { = func() {for , := range .Label().list { .pbLabel(tagSample_Label, .key, .value, 0) } } } .pbSample(, , ) }return .build()}// keysByCount sorts keys with higher counts first, breaking ties by key string order.type keysByCount struct { keys []string count map[string]int}func ( *keysByCount) () int { returnlen(.keys) }func ( *keysByCount) (, int) { .keys[], .keys[] = .keys[], .keys[] }func ( *keysByCount) (, int) bool { , := .keys[], .keys[] , := .count[], .count[]if != {return > }return < }// printStackRecord prints the function + source line information// for a single stack trace.func printStackRecord( io.Writer, []uintptr, bool) { := := runtime.CallersFrames()for { , := .Next() := .Functionif == "" { = truefmt.Fprintf(, "#\t%#x\n", .PC) } elseif != "runtime.goexit" && ( || !(strings.HasPrefix(, "runtime.") || strings.HasPrefix(, "internal/runtime/"))) {// Hide runtime.goexit and any runtime functions at the beginning. // This is useful mainly for allocation traces. = truefmt.Fprintf(, "#\t%#x\t%s+%#x\t%s:%d\n", .PC, , .PC-.Entry, .File, .Line) }if ! {break } }if ! {// We didn't print anything; do it again, // and this time include runtime functions. (, , true)return }fmt.Fprintf(, "\n")}// Interface to system profiles.// WriteHeapProfile is shorthand for [Lookup]("heap").WriteTo(w, 0).// It is preserved for backwards compatibility.func ( io.Writer) error {returnwriteHeap(, 0)}// countHeap returns the number of records in the heap profile.func countHeap() int { , := runtime.MemProfile(nil, true)return}// writeHeap writes the current runtime heap profile to w.func writeHeap( io.Writer, int) error {returnwriteHeapInternal(, , "")}// writeAlloc writes the current runtime heap profile to w// with the total allocation space as the default sample type.func writeAlloc( io.Writer, int) error {returnwriteHeapInternal(, , "alloc_space")}func writeHeapInternal( io.Writer, int, string) error {var *runtime.MemStatsif != 0 {// Read mem stats first, so that our other allocations // do not appear in the statistics. = new(runtime.MemStats)runtime.ReadMemStats() }// Find out how many records there are (the call // pprof_memProfileInternal(nil, true) below), // allocate that many records, and get the data. // There's a race—more records might be added between // the two calls—so allocate a few extra records for safety // and also try again if we're very unlucky. // The loop should only execute one iteration in the common case.var []profilerecord.MemProfileRecord , := pprof_memProfileInternal(nil, true)for {// Allocate room for a slightly bigger profile, // in case a few more entries have been added // since the call to MemProfile. = make([]profilerecord.MemProfileRecord, +50) , = pprof_memProfileInternal(, true)if { = [0:]break }// Profile grew; try again. }if == 0 {returnwriteHeapProto(, , int64(runtime.MemProfileRate), ) }slices.SortFunc(, func(, profilerecord.MemProfileRecord) int {returncmp.Compare(.InUseBytes(), .InUseBytes()) }) := bufio.NewWriter() := tabwriter.NewWriter(, 1, 8, 1, '\t', 0) = varruntime.MemProfileRecordfor := range { := &[] .AllocBytes += .AllocBytes .AllocObjects += .AllocObjects .FreeBytes += .FreeBytes .FreeObjects += .FreeObjects }// Technically the rate is MemProfileRate not 2*MemProfileRate, // but early versions of the C++ heap profiler reported 2*MemProfileRate, // so that's what pprof has come to expect. := 2 * runtime.MemProfileRate// pprof reads a profile with alloc == inuse as being a "2-column" profile // (objects and bytes, not distinguishing alloc from inuse), // but then such a profile can't be merged using pprof *.prof with // other 4-column profiles where alloc != inuse. // The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes. // pprof doesn't use these header values anymore except for checking equality. := .InUseBytes() := .AllocBytesif == { ++ }fmt.Fprintf(, "heap profile: %d: %d [%d: %d] @ heap/%d\n", .InUseObjects(), , .AllocObjects, , )for := range { := &[]fmt.Fprintf(, "%d: %d [%d: %d] @", .InUseObjects(), .InUseBytes(), .AllocObjects, .AllocBytes)for , := range .Stack {fmt.Fprintf(, " %#x", ) }fmt.Fprintf(, "\n")printStackRecord(, .Stack, false) }// Print memstats information too. // Pprof will ignore, but useful for people := fmt.Fprintf(, "\n# runtime.MemStats\n")fmt.Fprintf(, "# Alloc = %d\n", .Alloc)fmt.Fprintf(, "# TotalAlloc = %d\n", .TotalAlloc)fmt.Fprintf(, "# Sys = %d\n", .Sys)fmt.Fprintf(, "# Lookups = %d\n", .Lookups)fmt.Fprintf(, "# Mallocs = %d\n", .Mallocs)fmt.Fprintf(, "# Frees = %d\n", .Frees)fmt.Fprintf(, "# HeapAlloc = %d\n", .HeapAlloc)fmt.Fprintf(, "# HeapSys = %d\n", .HeapSys)fmt.Fprintf(, "# HeapIdle = %d\n", .HeapIdle)fmt.Fprintf(, "# HeapInuse = %d\n", .HeapInuse)fmt.Fprintf(, "# HeapReleased = %d\n", .HeapReleased)fmt.Fprintf(, "# HeapObjects = %d\n", .HeapObjects)fmt.Fprintf(, "# Stack = %d / %d\n", .StackInuse, .StackSys)fmt.Fprintf(, "# MSpan = %d / %d\n", .MSpanInuse, .MSpanSys)fmt.Fprintf(, "# MCache = %d / %d\n", .MCacheInuse, .MCacheSys)fmt.Fprintf(, "# BuckHashSys = %d\n", .BuckHashSys)fmt.Fprintf(, "# GCSys = %d\n", .GCSys)fmt.Fprintf(, "# OtherSys = %d\n", .OtherSys)fmt.Fprintf(, "# NextGC = %d\n", .NextGC)fmt.Fprintf(, "# LastGC = %d\n", .LastGC)fmt.Fprintf(, "# PauseNs = %d\n", .PauseNs)fmt.Fprintf(, "# PauseEnd = %d\n", .PauseEnd)fmt.Fprintf(, "# NumGC = %d\n", .NumGC)fmt.Fprintf(, "# NumForcedGC = %d\n", .NumForcedGC)fmt.Fprintf(, "# GCCPUFraction = %v\n", .GCCPUFraction)fmt.Fprintf(, "# DebugGC = %v\n", .DebugGC)// Also flush out MaxRSS on supported platforms.addMaxRSS() .Flush()return .Flush()}// countThreadCreate returns the size of the current ThreadCreateProfile.func countThreadCreate() int { , := runtime.ThreadCreateProfile(nil)return}// writeThreadCreate writes the current runtime ThreadCreateProfile to w.func writeThreadCreate( io.Writer, int) error {// Until https://golang.org/issues/6104 is addressed, wrap // ThreadCreateProfile because there's no point in tracking labels when we // don't get any stack-traces.returnwriteRuntimeProfile(, , "threadcreate", func( []profilerecord.StackRecord, []unsafe.Pointer) ( int, bool) {returnpprof_threadCreateInternal() })}// countGoroutine returns the number of goroutines.func countGoroutine() int {returnruntime.NumGoroutine()}// writeGoroutine writes the current runtime GoroutineProfile to w.func writeGoroutine( io.Writer, int) error {if >= 2 {returnwriteGoroutineStacks() }returnwriteRuntimeProfile(, , "goroutine", pprof_goroutineProfileWithLabels)}func writeGoroutineStacks( io.Writer) error {// We don't know how big the buffer needs to be to collect // all the goroutines. Start with 1 MB and try a few times, doubling each time. // Give up and use a truncated trace if 64 MB is not enough. := make([]byte, 1<<20)for := 0; ; ++ { := runtime.Stack(, true)if < len() { = [:]break }iflen() >= 64<<20 {// Filled 64 MB - stop there.break } = make([]byte, 2*len()) } , := .Write()return}func writeRuntimeProfile( io.Writer, int, string, func([]profilerecord.StackRecord, []unsafe.Pointer) (int, bool)) error {// Find out how many records there are (fetch(nil)), // allocate that many records, and get the data. // There's a race—more records might be added between // the two calls—so allocate a few extra records for safety // and also try again if we're very unlucky. // The loop should only execute one iteration in the common case.var []profilerecord.StackRecordvar []unsafe.Pointer , := (nil, nil)for {// Allocate room for a slightly bigger profile, // in case a few more entries have been added // since the call to ThreadProfile. = make([]profilerecord.StackRecord, +10) = make([]unsafe.Pointer, +10) , = (, )if { = [0:]break }// Profile grew; try again. }returnprintCountProfile(, , , &runtimeProfile{, })}type runtimeProfile struct { stk []profilerecord.StackRecord labels []unsafe.Pointer}func ( *runtimeProfile) () int { returnlen(.stk) }func ( *runtimeProfile) ( int) []uintptr { return .stk[].Stack }func ( *runtimeProfile) ( int) *labelMap { return (*labelMap)(.labels[]) }var cpu struct {sync.Mutex profiling bool done chanbool}// StartCPUProfile enables CPU profiling for the current process.// While profiling, the profile will be buffered and written to w.// StartCPUProfile returns an error if profiling is already enabled.//// On Unix-like systems, StartCPUProfile does not work by default for// Go code built with -buildmode=c-archive or -buildmode=c-shared.// StartCPUProfile relies on the SIGPROF signal, but that signal will// be delivered to the main program's SIGPROF signal handler (if any)// not to the one used by Go. To make it work, call [os/signal.Notify]// for [syscall.SIGPROF], but note that doing so may break any profiling// being done by the main program.func ( io.Writer) error {// The runtime routines allow a variable profiling rate, // but in practice operating systems cannot trigger signals // at more than about 500 Hz, and our processing of the // signal is not cheap (mostly getting the stack trace). // 100 Hz is a reasonable choice: it is frequent enough to // produce useful data, rare enough not to bog down the // system, and a nice round number to make it easy to // convert sample counts to seconds. Instead of requiring // each client to specify the frequency, we hard code it.const = 100cpu.Lock()defercpu.Unlock()ifcpu.done == nil {cpu.done = make(chanbool) }// Double-check.ifcpu.profiling {returnfmt.Errorf("cpu profiling already in use") }cpu.profiling = trueruntime.SetCPUProfileRate()goprofileWriter()returnnil}// readProfile, provided by the runtime, returns the next chunk of// binary CPU profiling stack trace data, blocking until data is available.// If profiling is turned off and all the profile data accumulated while it was// on has been returned, readProfile returns eof=true.// The caller must save the returned data and tags before calling readProfile again.func readProfile() ( []uint64, []unsafe.Pointer, bool)func profileWriter( io.Writer) { := newProfileBuilder()varerrorfor {time.Sleep(100 * time.Millisecond) , , := readProfile()if := .addCPUData(, ); != nil && == nil { = }if {break } }if != nil {// The runtime should never produce an invalid or truncated profile. // It drops records that can't fit into its log buffers.panic("runtime/pprof: converting profile: " + .Error()) } .build()cpu.done <- true}// StopCPUProfile stops the current CPU profile, if any.// StopCPUProfile only returns after all the writes for the// profile have completed.func () {cpu.Lock()defercpu.Unlock()if !cpu.profiling {return }cpu.profiling = falseruntime.SetCPUProfileRate(0) <-cpu.done}// countBlock returns the number of records in the blocking profile.func countBlock() int { , := runtime.BlockProfile(nil)return}// countMutex returns the number of records in the mutex profile.func countMutex() int { , := runtime.MutexProfile(nil)return}// writeBlock writes the current blocking profile to w.func writeBlock( io.Writer, int) error {returnwriteProfileInternal(, , "contention", pprof_blockProfileInternal)}// writeMutex writes the current mutex profile to w.func writeMutex( io.Writer, int) error {returnwriteProfileInternal(, , "mutex", pprof_mutexProfileInternal)}// writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters.func writeProfileInternal( io.Writer, int, string, func([]profilerecord.BlockProfileRecord) (int, bool)) error {var []profilerecord.BlockProfileRecord , := (nil)for { = make([]profilerecord.BlockProfileRecord, +50) , = ()if { = [:]break } }slices.SortFunc(, func(, profilerecord.BlockProfileRecord) int {returncmp.Compare(.Cycles, .Cycles) })if <= 0 {returnprintCountCycleProfile(, "contentions", "delay", ) } := bufio.NewWriter() := tabwriter.NewWriter(, 1, 8, 1, '\t', 0) = fmt.Fprintf(, "--- %v:\n", )fmt.Fprintf(, "cycles/second=%v\n", pprof_cyclesPerSecond())if == "mutex" {fmt.Fprintf(, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) } := pprof_makeProfStack()for := range { := &[]fmt.Fprintf(, "%v %v @", .Cycles, .Count) := expandInlinedFrames(, .Stack) := [:]for , := range {fmt.Fprintf(, " %#x", ) }fmt.Fprint(, "\n")if > 0 {printStackRecord(, , true) } }if != nil { .Flush() }return .Flush()}//go:linkname pprof_goroutineProfileWithLabels runtime.pprof_goroutineProfileWithLabelsfunc pprof_goroutineProfileWithLabels( []profilerecord.StackRecord, []unsafe.Pointer) ( int, bool)//go:linkname pprof_cyclesPerSecond runtime/pprof.runtime_cyclesPerSecondfunc pprof_cyclesPerSecond() int64//go:linkname pprof_memProfileInternal runtime.pprof_memProfileInternalfunc pprof_memProfileInternal( []profilerecord.MemProfileRecord, bool) ( int, bool)//go:linkname pprof_blockProfileInternal runtime.pprof_blockProfileInternalfunc pprof_blockProfileInternal( []profilerecord.BlockProfileRecord) ( int, bool)//go:linkname pprof_mutexProfileInternal runtime.pprof_mutexProfileInternalfunc pprof_mutexProfileInternal( []profilerecord.BlockProfileRecord) ( int, bool)//go:linkname pprof_threadCreateInternal runtime.pprof_threadCreateInternalfunc pprof_threadCreateInternal( []profilerecord.StackRecord) ( int, bool)//go:linkname pprof_fpunwindExpand runtime.pprof_fpunwindExpandfunc pprof_fpunwindExpand(, []uintptr) int//go:linkname pprof_makeProfStack runtime.pprof_makeProfStackfunc pprof_makeProfStack() []uintptr
The pages are generated with Goldsv0.7.9-preview. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.