Source File
pprof.go
Belonging Package
runtime/pprof
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package pprof writes runtime profiling data in the format expected
// by the pprof visualization tool.
//
// # Profiling a Go program
//
// The first step to profiling a Go program is to enable profiling.
// Support for profiling benchmarks built with the standard testing
// package is built into go test. For example, the following command
// runs benchmarks in the current directory and writes the CPU and
// memory profiles to cpu.prof and mem.prof:
//
// go test -cpuprofile cpu.prof -memprofile mem.prof -bench .
//
// To add equivalent profiling support to a standalone program, add
// code like the following to your main function:
//
// var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")
// var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
//
// func main() {
// flag.Parse()
// if *cpuprofile != "" {
// f, err := os.Create(*cpuprofile)
// if err != nil {
// log.Fatal("could not create CPU profile: ", err)
// }
// defer f.Close() // error handling omitted for example
// if err := pprof.StartCPUProfile(f); err != nil {
// log.Fatal("could not start CPU profile: ", err)
// }
// defer pprof.StopCPUProfile()
// }
//
// // ... rest of the program ...
//
// if *memprofile != "" {
// f, err := os.Create(*memprofile)
// if err != nil {
// log.Fatal("could not create memory profile: ", err)
// }
// defer f.Close() // error handling omitted for example
// runtime.GC() // get up-to-date statistics
// // Lookup("allocs") creates a profile similar to go test -memprofile.
// // Alternatively, use Lookup("heap") for a profile
// // that has inuse_space as the default index.
// if err := pprof.Lookup("allocs").WriteTo(f, 0); err != nil {
// log.Fatal("could not write memory profile: ", err)
// }
// }
// }
//
// There is also a standard HTTP interface to profiling data. Adding
// the following line will install handlers under the /debug/pprof/
// URL to download live profiles:
//
// import _ "net/http/pprof"
//
// See the net/http/pprof package for more details.
//
// Profiles can then be visualized with the pprof tool:
//
// go tool pprof cpu.prof
//
// There are many commands available from the pprof command line.
// Commonly used commands include "top", which prints a summary of the
// top program hot-spots, and "web", which opens an interactive graph
// of hot-spots and their call graphs. Use "help" for information on
// all pprof commands.
//
// For more information about pprof, see
// https://github.com/google/pprof/blob/main/doc/README.md.
package pprof
import (
)
// BUG(rsc): Profiles are only as good as the kernel support used to generate them.
// See https://golang.org/issue/13841 for details about known problems.
// A Profile is a collection of stack traces showing the call sequences
// that led to instances of a particular event, such as allocation.
// Packages can create and maintain their own profiles; the most common
// use is for tracking resources that must be explicitly closed, such as files
// or network connections.
//
// A Profile's methods can be called from multiple goroutines simultaneously.
//
// Each Profile has a unique name. A few profiles are predefined:
//
// goroutine - stack traces of all current goroutines
// heap - a sampling of memory allocations of live objects
// allocs - a sampling of all past memory allocations
// threadcreate - stack traces that led to the creation of new OS threads
// block - stack traces that led to blocking on synchronization primitives
// mutex - stack traces of holders of contended mutexes
//
// These predefined profiles maintain themselves and panic on an explicit
// [Profile.Add] or [Profile.Remove] method call.
//
// The CPU profile is not available as a Profile. It has a special API,
// the [StartCPUProfile] and [StopCPUProfile] functions, because it streams
// output to a writer during profiling.
//
// # Heap profile
//
// The heap profile reports statistics as of the most recently completed
// garbage collection; it elides more recent allocation to avoid skewing
// the profile away from live data and toward garbage.
// If there has been no garbage collection at all, the heap profile reports
// all known allocations. This exception helps mainly in programs running
// without garbage collection enabled, usually for debugging purposes.
//
// The heap profile tracks both the allocation sites for all live objects in
// the application memory and for all objects allocated since the program start.
// Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects
// flags select which to display, defaulting to -inuse_space (live objects,
// scaled by size).
//
// # Allocs profile
//
// The allocs profile is the same as the heap profile but changes the default
// pprof display to -alloc_space, the total number of bytes allocated since
// the program began (including garbage-collected bytes).
//
// # Block profile
//
// The block profile tracks time spent blocked on synchronization primitives,
// such as [sync.Mutex], [sync.RWMutex], [sync.WaitGroup], [sync.Cond], and
// channel send/receive/select.
//
// Stack traces correspond to the location that blocked (for example,
// [sync.Mutex.Lock]).
//
// Sample values correspond to cumulative time spent blocked at that stack
// trace, subject to time-based sampling specified by
// [runtime.SetBlockProfileRate].
//
// # Mutex profile
//
// The mutex profile tracks contention on mutexes, such as [sync.Mutex],
// [sync.RWMutex], and runtime-internal locks.
//
// Stack traces correspond to the end of the critical section causing
// contention. For example, a lock held for a long time while other goroutines
// are waiting to acquire the lock will report contention when the lock is
// finally unlocked (that is, at [sync.Mutex.Unlock]).
//
// Sample values correspond to the approximate cumulative time other goroutines
// spent blocked waiting for the lock, subject to event-based sampling
// specified by [runtime.SetMutexProfileFraction]. For example, if a caller
// holds a lock for 1s while 5 other goroutines are waiting for the entire
// second to acquire the lock, its unlock call stack will report 5s of
// contention.
//
// Runtime-internal locks are always reported at the location
// "runtime._LostContendedRuntimeLock". More detailed stack traces for
// runtime-internal locks can be obtained by setting
// `GODEBUG=runtimecontentionstacks=1` (see package [runtime] docs for
// caveats).
type Profile struct {
name string
mu sync.Mutex
m map[any][]uintptr
count func() int
write func(io.Writer, int) error
}
// profiles records all registered profiles.
var profiles struct {
mu sync.Mutex
m map[string]*Profile
}
var goroutineProfile = &Profile{
name: "goroutine",
count: countGoroutine,
write: writeGoroutine,
}
var threadcreateProfile = &Profile{
name: "threadcreate",
count: countThreadCreate,
write: writeThreadCreate,
}
var heapProfile = &Profile{
name: "heap",
count: countHeap,
write: writeHeap,
}
var allocsProfile = &Profile{
name: "allocs",
count: countHeap, // identical to heap profile
write: writeAlloc,
}
var blockProfile = &Profile{
name: "block",
count: countBlock,
write: writeBlock,
}
var mutexProfile = &Profile{
name: "mutex",
count: countMutex,
write: writeMutex,
}
func lockProfiles() {
profiles.mu.Lock()
if profiles.m == nil {
// Initial built-in profiles.
profiles.m = map[string]*Profile{
"goroutine": goroutineProfile,
"threadcreate": threadcreateProfile,
"heap": heapProfile,
"allocs": allocsProfile,
"block": blockProfile,
"mutex": mutexProfile,
}
}
}
func unlockProfiles() {
profiles.mu.Unlock()
}
// NewProfile creates a new profile with the given name.
// If a profile with that name already exists, NewProfile panics.
// The convention is to use a 'import/path.' prefix to create
// separate name spaces for each package.
// For compatibility with various tools that read pprof data,
// profile names should not contain spaces.
func ( string) *Profile {
lockProfiles()
defer unlockProfiles()
if == "" {
panic("pprof: NewProfile with empty name")
}
if profiles.m[] != nil {
panic("pprof: NewProfile name already in use: " + )
}
:= &Profile{
name: ,
m: map[any][]uintptr{},
}
profiles.m[] =
return
}
// Lookup returns the profile with the given name, or nil if no such profile exists.
func ( string) *Profile {
lockProfiles()
defer unlockProfiles()
return profiles.m[]
}
// Profiles returns a slice of all the known profiles, sorted by name.
func () []*Profile {
lockProfiles()
defer unlockProfiles()
:= make([]*Profile, 0, len(profiles.m))
for , := range profiles.m {
= append(, )
}
slices.SortFunc(, func(, *Profile) int {
return strings.Compare(.name, .name)
})
return
}
// Name returns this profile's name, which can be passed to [Lookup] to reobtain the profile.
func ( *Profile) () string {
return .name
}
// Count returns the number of execution stacks currently in the profile.
func ( *Profile) () int {
.mu.Lock()
defer .mu.Unlock()
if .count != nil {
return .count()
}
return len(.m)
}
// Add adds the current execution stack to the profile, associated with value.
// Add stores value in an internal map, so value must be suitable for use as
// a map key and will not be garbage collected until the corresponding
// call to [Profile.Remove]. Add panics if the profile already contains a stack for value.
//
// The skip parameter has the same meaning as [runtime.Caller]'s skip
// and controls where the stack trace begins. Passing skip=0 begins the
// trace in the function calling Add. For example, given this
// execution stack:
//
// Add
// called from rpc.NewClient
// called from mypkg.Run
// called from main.main
//
// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
func ( *Profile) ( any, int) {
if .name == "" {
panic("pprof: use of uninitialized Profile")
}
if .write != nil {
panic("pprof: Add called on built-in Profile " + .name)
}
:= make([]uintptr, 32)
:= runtime.Callers(+1, [:])
= [:]
if len() == 0 {
// The value for skip is too large, and there's no stack trace to record.
= []uintptr{abi.FuncPCABIInternal(lostProfileEvent)}
}
.mu.Lock()
defer .mu.Unlock()
if .m[] != nil {
panic("pprof: Profile.Add of duplicate value")
}
.m[] =
}
// Remove removes the execution stack associated with value from the profile.
// It is a no-op if the value is not in the profile.
func ( *Profile) ( any) {
.mu.Lock()
defer .mu.Unlock()
delete(.m, )
}
// WriteTo writes a pprof-formatted snapshot of the profile to w.
// If a write to w returns an error, WriteTo returns that error.
// Otherwise, WriteTo returns nil.
//
// The debug parameter enables additional output.
// Passing debug=0 writes the gzip-compressed protocol buffer described
// in https://github.com/google/pprof/tree/main/proto#overview.
// Passing debug=1 writes the legacy text format with comments
// translating addresses to function names and line numbers, so that a
// programmer can read the profile without tools.
//
// The predefined profiles may assign meaning to other debug values;
// for example, when printing the "goroutine" profile, debug=2 means to
// print the goroutine stacks in the same form that a Go program uses
// when dying due to an unrecovered panic.
func ( *Profile) ( io.Writer, int) error {
if .name == "" {
panic("pprof: use of zero Profile")
}
if .write != nil {
return .write(, )
}
// Obtain consistent snapshot under lock; then process without lock.
.mu.Lock()
:= make([][]uintptr, 0, len(.m))
for , := range .m {
= append(, )
}
.mu.Unlock()
// Map order is non-deterministic; make output deterministic.
slices.SortFunc(, slices.Compare)
return printCountProfile(, , .name, stackProfile())
}
type stackProfile [][]uintptr
func ( stackProfile) () int { return len() }
func ( stackProfile) ( int) []uintptr { return [] }
func ( stackProfile) ( int) *labelMap { return nil }
// A countProfile is a set of stack traces to be printed as counts
// grouped by stack trace. There are multiple implementations:
// all that matters is that we can find out how many traces there are
// and obtain each trace in turn.
type countProfile interface {
Len() int
Stack(i int) []uintptr
Label(i int) *labelMap
}
// expandInlinedFrames copies the call stack from pcs into dst, expanding any
// PCs corresponding to inlined calls into the corresponding PCs for the inlined
// functions. Returns the number of frames copied to dst.
func expandInlinedFrames(, []uintptr) int {
:= runtime.CallersFrames()
var int
for < len() {
, := .Next()
// f.PC is a "call PC", but later consumers will expect
// "return PCs"
[] = .PC + 1
++
if ! {
break
}
}
return
}
// printCountCycleProfile outputs block profile records (for block or mutex profiles)
// as the pprof-proto format output. Translations from cycle count to time duration
// are done because The proto expects count and time (nanoseconds) instead of count
// and the number of cycles for block, contention profiles.
func printCountCycleProfile( io.Writer, , string, []profilerecord.BlockProfileRecord) error {
// Output profile in protobuf form.
:= newProfileBuilder()
.pbValueType(tagProfile_PeriodType, , "count")
.pb.int64Opt(tagProfile_Period, 1)
.pbValueType(tagProfile_SampleType, , "count")
.pbValueType(tagProfile_SampleType, , "nanoseconds")
:= float64(pprof_cyclesPerSecond()) / 1e9
:= []int64{0, 0}
var []uint64
:= pprof_makeProfStack()
for , := range {
[0] = .Count
[1] = int64(float64(.Cycles) / )
// For count profiles, all stack addresses are
// return PCs, which is what appendLocsForStack expects.
:= expandInlinedFrames(, .Stack)
= .appendLocsForStack([:0], [:])
.pbSample(, , nil)
}
.build()
return nil
}
// printCountProfile prints a countProfile at the specified debug level.
// The profile will be in compressed proto format unless debug is nonzero.
func printCountProfile( io.Writer, int, string, countProfile) error {
// Build count of each stack.
var strings.Builder
:= func( []uintptr, *labelMap) string {
.Reset()
fmt.Fprintf(&, "@")
for , := range {
fmt.Fprintf(&, " %#x", )
}
if != nil {
.WriteString("\n# labels: ")
.WriteString(.String())
}
return .String()
}
:= map[string]int{}
:= map[string]int{}
var []string
:= .Len()
for := 0; < ; ++ {
:= (.Stack(), .Label())
if [] == 0 {
[] =
= append(, )
}
[]++
}
sort.Sort(&keysByCount{, })
if > 0 {
// Print debug profile in legacy format
:= tabwriter.NewWriter(, 1, 8, 1, '\t', 0)
fmt.Fprintf(, "%s profile: total %d\n", , .Len())
for , := range {
fmt.Fprintf(, "%d %s\n", [], )
printStackRecord(, .Stack([]), false)
}
return .Flush()
}
// Output profile in protobuf form.
:= newProfileBuilder()
.pbValueType(tagProfile_PeriodType, , "count")
.pb.int64Opt(tagProfile_Period, 1)
.pbValueType(tagProfile_SampleType, , "count")
:= []int64{0}
var []uint64
for , := range {
[0] = int64([])
// For count profiles, all stack addresses are
// return PCs, which is what appendLocsForStack expects.
= .appendLocsForStack([:0], .Stack([]))
:= []
var func()
if .Label() != nil {
= func() {
for , := range .Label().list {
.pbLabel(tagSample_Label, .key, .value, 0)
}
}
}
.pbSample(, , )
}
.build()
return nil
}
// keysByCount sorts keys with higher counts first, breaking ties by key string order.
type keysByCount struct {
keys []string
count map[string]int
}
func ( *keysByCount) () int { return len(.keys) }
func ( *keysByCount) (, int) { .keys[], .keys[] = .keys[], .keys[] }
func ( *keysByCount) (, int) bool {
, := .keys[], .keys[]
, := .count[], .count[]
if != {
return >
}
return <
}
// printStackRecord prints the function + source line information
// for a single stack trace.
func printStackRecord( io.Writer, []uintptr, bool) {
:=
:= runtime.CallersFrames()
for {
, := .Next()
:= .Function
if == "" {
= true
fmt.Fprintf(, "#\t%#x\n", .PC)
} else if != "runtime.goexit" && ( || !strings.HasPrefix(, "runtime.")) {
// Hide runtime.goexit and any runtime functions at the beginning.
// This is useful mainly for allocation traces.
= true
fmt.Fprintf(, "#\t%#x\t%s+%#x\t%s:%d\n", .PC, , .PC-.Entry, .File, .Line)
}
if ! {
break
}
}
if ! {
// We didn't print anything; do it again,
// and this time include runtime functions.
(, , true)
return
}
fmt.Fprintf(, "\n")
}
// Interface to system profiles.
// WriteHeapProfile is shorthand for [Lookup]("heap").WriteTo(w, 0).
// It is preserved for backwards compatibility.
func ( io.Writer) error {
return writeHeap(, 0)
}
// countHeap returns the number of records in the heap profile.
func countHeap() int {
, := runtime.MemProfile(nil, true)
return
}
// writeHeap writes the current runtime heap profile to w.
func writeHeap( io.Writer, int) error {
return writeHeapInternal(, , "")
}
// writeAlloc writes the current runtime heap profile to w
// with the total allocation space as the default sample type.
func writeAlloc( io.Writer, int) error {
return writeHeapInternal(, , "alloc_space")
}
func writeHeapInternal( io.Writer, int, string) error {
var *runtime.MemStats
if != 0 {
// Read mem stats first, so that our other allocations
// do not appear in the statistics.
= new(runtime.MemStats)
runtime.ReadMemStats()
}
// Find out how many records there are (the call
// pprof_memProfileInternal(nil, true) below),
// allocate that many records, and get the data.
// There's a race—more records might be added between
// the two calls—so allocate a few extra records for safety
// and also try again if we're very unlucky.
// The loop should only execute one iteration in the common case.
var []profilerecord.MemProfileRecord
, := pprof_memProfileInternal(nil, true)
for {
// Allocate room for a slightly bigger profile,
// in case a few more entries have been added
// since the call to MemProfile.
= make([]profilerecord.MemProfileRecord, +50)
, = pprof_memProfileInternal(, true)
if {
= [0:]
break
}
// Profile grew; try again.
}
if == 0 {
return writeHeapProto(, , int64(runtime.MemProfileRate), )
}
slices.SortFunc(, func(, profilerecord.MemProfileRecord) int {
return cmp.Compare(.InUseBytes(), .InUseBytes())
})
:= bufio.NewWriter()
:= tabwriter.NewWriter(, 1, 8, 1, '\t', 0)
=
var runtime.MemProfileRecord
for := range {
:= &[]
.AllocBytes += .AllocBytes
.AllocObjects += .AllocObjects
.FreeBytes += .FreeBytes
.FreeObjects += .FreeObjects
}
// Technically the rate is MemProfileRate not 2*MemProfileRate,
// but early versions of the C++ heap profiler reported 2*MemProfileRate,
// so that's what pprof has come to expect.
:= 2 * runtime.MemProfileRate
// pprof reads a profile with alloc == inuse as being a "2-column" profile
// (objects and bytes, not distinguishing alloc from inuse),
// but then such a profile can't be merged using pprof *.prof with
// other 4-column profiles where alloc != inuse.
// The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes.
// pprof doesn't use these header values anymore except for checking equality.
:= .InUseBytes()
:= .AllocBytes
if == {
++
}
fmt.Fprintf(, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
.InUseObjects(), ,
.AllocObjects, ,
)
for := range {
:= &[]
fmt.Fprintf(, "%d: %d [%d: %d] @",
.InUseObjects(), .InUseBytes(),
.AllocObjects, .AllocBytes)
for , := range .Stack {
fmt.Fprintf(, " %#x", )
}
fmt.Fprintf(, "\n")
printStackRecord(, .Stack, false)
}
// Print memstats information too.
// Pprof will ignore, but useful for people
:=
fmt.Fprintf(, "\n# runtime.MemStats\n")
fmt.Fprintf(, "# Alloc = %d\n", .Alloc)
fmt.Fprintf(, "# TotalAlloc = %d\n", .TotalAlloc)
fmt.Fprintf(, "# Sys = %d\n", .Sys)
fmt.Fprintf(, "# Lookups = %d\n", .Lookups)
fmt.Fprintf(, "# Mallocs = %d\n", .Mallocs)
fmt.Fprintf(, "# Frees = %d\n", .Frees)
fmt.Fprintf(, "# HeapAlloc = %d\n", .HeapAlloc)
fmt.Fprintf(, "# HeapSys = %d\n", .HeapSys)
fmt.Fprintf(, "# HeapIdle = %d\n", .HeapIdle)
fmt.Fprintf(, "# HeapInuse = %d\n", .HeapInuse)
fmt.Fprintf(, "# HeapReleased = %d\n", .HeapReleased)
fmt.Fprintf(, "# HeapObjects = %d\n", .HeapObjects)
fmt.Fprintf(, "# Stack = %d / %d\n", .StackInuse, .StackSys)
fmt.Fprintf(, "# MSpan = %d / %d\n", .MSpanInuse, .MSpanSys)
fmt.Fprintf(, "# MCache = %d / %d\n", .MCacheInuse, .MCacheSys)
fmt.Fprintf(, "# BuckHashSys = %d\n", .BuckHashSys)
fmt.Fprintf(, "# GCSys = %d\n", .GCSys)
fmt.Fprintf(, "# OtherSys = %d\n", .OtherSys)
fmt.Fprintf(, "# NextGC = %d\n", .NextGC)
fmt.Fprintf(, "# LastGC = %d\n", .LastGC)
fmt.Fprintf(, "# PauseNs = %d\n", .PauseNs)
fmt.Fprintf(, "# PauseEnd = %d\n", .PauseEnd)
fmt.Fprintf(, "# NumGC = %d\n", .NumGC)
fmt.Fprintf(, "# NumForcedGC = %d\n", .NumForcedGC)
fmt.Fprintf(, "# GCCPUFraction = %v\n", .GCCPUFraction)
fmt.Fprintf(, "# DebugGC = %v\n", .DebugGC)
// Also flush out MaxRSS on supported platforms.
addMaxRSS()
.Flush()
return .Flush()
}
// countThreadCreate returns the size of the current ThreadCreateProfile.
func countThreadCreate() int {
, := runtime.ThreadCreateProfile(nil)
return
}
// writeThreadCreate writes the current runtime ThreadCreateProfile to w.
func writeThreadCreate( io.Writer, int) error {
// Until https://golang.org/issues/6104 is addressed, wrap
// ThreadCreateProfile because there's no point in tracking labels when we
// don't get any stack-traces.
return writeRuntimeProfile(, , "threadcreate", func( []profilerecord.StackRecord, []unsafe.Pointer) ( int, bool) {
return pprof_threadCreateInternal()
})
}
// countGoroutine returns the number of goroutines.
func countGoroutine() int {
return runtime.NumGoroutine()
}
// writeGoroutine writes the current runtime GoroutineProfile to w.
func writeGoroutine( io.Writer, int) error {
if >= 2 {
return writeGoroutineStacks()
}
return writeRuntimeProfile(, , "goroutine", pprof_goroutineProfileWithLabels)
}
func writeGoroutineStacks( io.Writer) error {
// We don't know how big the buffer needs to be to collect
// all the goroutines. Start with 1 MB and try a few times, doubling each time.
// Give up and use a truncated trace if 64 MB is not enough.
:= make([]byte, 1<<20)
for := 0; ; ++ {
:= runtime.Stack(, true)
if < len() {
= [:]
break
}
if len() >= 64<<20 {
// Filled 64 MB - stop there.
break
}
= make([]byte, 2*len())
}
, := .Write()
return
}
func writeRuntimeProfile( io.Writer, int, string, func([]profilerecord.StackRecord, []unsafe.Pointer) (int, bool)) error {
// Find out how many records there are (fetch(nil)),
// allocate that many records, and get the data.
// There's a race—more records might be added between
// the two calls—so allocate a few extra records for safety
// and also try again if we're very unlucky.
// The loop should only execute one iteration in the common case.
var []profilerecord.StackRecord
var []unsafe.Pointer
, := (nil, nil)
for {
// Allocate room for a slightly bigger profile,
// in case a few more entries have been added
// since the call to ThreadProfile.
= make([]profilerecord.StackRecord, +10)
= make([]unsafe.Pointer, +10)
, = (, )
if {
= [0:]
break
}
// Profile grew; try again.
}
return printCountProfile(, , , &runtimeProfile{, })
}
type runtimeProfile struct {
stk []profilerecord.StackRecord
labels []unsafe.Pointer
}
func ( *runtimeProfile) () int { return len(.stk) }
func ( *runtimeProfile) ( int) []uintptr { return .stk[].Stack }
func ( *runtimeProfile) ( int) *labelMap { return (*labelMap)(.labels[]) }
var cpu struct {
sync.Mutex
profiling bool
done chan bool
}
// StartCPUProfile enables CPU profiling for the current process.
// While profiling, the profile will be buffered and written to w.
// StartCPUProfile returns an error if profiling is already enabled.
//
// On Unix-like systems, StartCPUProfile does not work by default for
// Go code built with -buildmode=c-archive or -buildmode=c-shared.
// StartCPUProfile relies on the SIGPROF signal, but that signal will
// be delivered to the main program's SIGPROF signal handler (if any)
// not to the one used by Go. To make it work, call [os/signal.Notify]
// for [syscall.SIGPROF], but note that doing so may break any profiling
// being done by the main program.
func ( io.Writer) error {
// The runtime routines allow a variable profiling rate,
// but in practice operating systems cannot trigger signals
// at more than about 500 Hz, and our processing of the
// signal is not cheap (mostly getting the stack trace).
// 100 Hz is a reasonable choice: it is frequent enough to
// produce useful data, rare enough not to bog down the
// system, and a nice round number to make it easy to
// convert sample counts to seconds. Instead of requiring
// each client to specify the frequency, we hard code it.
const = 100
cpu.Lock()
defer cpu.Unlock()
if cpu.done == nil {
cpu.done = make(chan bool)
}
// Double-check.
if cpu.profiling {
return fmt.Errorf("cpu profiling already in use")
}
cpu.profiling = true
runtime.SetCPUProfileRate()
go profileWriter()
return nil
}
// readProfile, provided by the runtime, returns the next chunk of
// binary CPU profiling stack trace data, blocking until data is available.
// If profiling is turned off and all the profile data accumulated while it was
// on has been returned, readProfile returns eof=true.
// The caller must save the returned data and tags before calling readProfile again.
func readProfile() ( []uint64, []unsafe.Pointer, bool)
func profileWriter( io.Writer) {
:= newProfileBuilder()
var error
for {
time.Sleep(100 * time.Millisecond)
, , := readProfile()
if := .addCPUData(, ); != nil && == nil {
=
}
if {
break
}
}
if != nil {
// The runtime should never produce an invalid or truncated profile.
// It drops records that can't fit into its log buffers.
panic("runtime/pprof: converting profile: " + .Error())
}
.build()
cpu.done <- true
}
// StopCPUProfile stops the current CPU profile, if any.
// StopCPUProfile only returns after all the writes for the
// profile have completed.
func () {
cpu.Lock()
defer cpu.Unlock()
if !cpu.profiling {
return
}
cpu.profiling = false
runtime.SetCPUProfileRate(0)
<-cpu.done
}
// countBlock returns the number of records in the blocking profile.
func countBlock() int {
, := runtime.BlockProfile(nil)
return
}
// countMutex returns the number of records in the mutex profile.
func countMutex() int {
, := runtime.MutexProfile(nil)
return
}
// writeBlock writes the current blocking profile to w.
func writeBlock( io.Writer, int) error {
return writeProfileInternal(, , "contention", pprof_blockProfileInternal)
}
// writeMutex writes the current mutex profile to w.
func writeMutex( io.Writer, int) error {
return writeProfileInternal(, , "mutex", pprof_mutexProfileInternal)
}
// writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters.
func writeProfileInternal( io.Writer, int, string, func([]profilerecord.BlockProfileRecord) (int, bool)) error {
var []profilerecord.BlockProfileRecord
, := (nil)
for {
= make([]profilerecord.BlockProfileRecord, +50)
, = ()
if {
= [:]
break
}
}
slices.SortFunc(, func(, profilerecord.BlockProfileRecord) int {
return cmp.Compare(.Cycles, .Cycles)
})
if <= 0 {
return printCountCycleProfile(, "contentions", "delay", )
}
:= bufio.NewWriter()
:= tabwriter.NewWriter(, 1, 8, 1, '\t', 0)
=
fmt.Fprintf(, "--- %v:\n", )
fmt.Fprintf(, "cycles/second=%v\n", pprof_cyclesPerSecond())
if == "mutex" {
fmt.Fprintf(, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))
}
:= pprof_makeProfStack()
for := range {
:= &[]
fmt.Fprintf(, "%v %v @", .Cycles, .Count)
:= expandInlinedFrames(, .Stack)
:= [:]
for , := range {
fmt.Fprintf(, " %#x", )
}
fmt.Fprint(, "\n")
if > 0 {
printStackRecord(, , true)
}
}
if != nil {
.Flush()
}
return .Flush()
}
//go:linkname pprof_goroutineProfileWithLabels runtime.pprof_goroutineProfileWithLabels
func pprof_goroutineProfileWithLabels( []profilerecord.StackRecord, []unsafe.Pointer) ( int, bool)
//go:linkname pprof_cyclesPerSecond runtime/pprof.runtime_cyclesPerSecond
func pprof_cyclesPerSecond() int64
//go:linkname pprof_memProfileInternal runtime.pprof_memProfileInternal
func pprof_memProfileInternal( []profilerecord.MemProfileRecord, bool) ( int, bool)
//go:linkname pprof_blockProfileInternal runtime.pprof_blockProfileInternal
func pprof_blockProfileInternal( []profilerecord.BlockProfileRecord) ( int, bool)
//go:linkname pprof_mutexProfileInternal runtime.pprof_mutexProfileInternal
func pprof_mutexProfileInternal( []profilerecord.BlockProfileRecord) ( int, bool)
//go:linkname pprof_threadCreateInternal runtime.pprof_threadCreateInternal
func pprof_threadCreateInternal( []profilerecord.StackRecord) ( int, bool)
//go:linkname pprof_fpunwindExpand runtime.pprof_fpunwindExpand
func pprof_fpunwindExpand(, []uintptr) int
//go:linkname pprof_makeProfStack runtime.pprof_makeProfStack
func pprof_makeProfStack() []uintptr
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |