Source File
initorder.go
Belonging Package
go/types
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
// Source: ../../cmd/compile/internal/types2/initorder.go
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
.
)
// initOrder computes the Info.InitOrder for package variables.
func ( *Checker) () {
// An InitOrder may already have been computed if a package is
// built from several calls to (*Checker).Files. Clear it.
.Info.InitOrder = .Info.InitOrder[:0]
// Compute the object dependency graph and initialize
// a priority queue with the list of graph nodes.
:= nodeQueue(dependencyGraph(.objMap))
heap.Init(&)
const = false
if {
fmt.Printf("Computing initialization order for %s\n\n", .pkg)
fmt.Println("Object dependency graph:")
for , := range .objMap {
// only print objects that may appear in the dependency graph
if , := .(dependency); != nil {
if len(.deps) > 0 {
fmt.Printf("\t%s depends on\n", .Name())
for := range .deps {
fmt.Printf("\t\t%s\n", .Name())
}
} else {
fmt.Printf("\t%s has no dependencies\n", .Name())
}
}
}
fmt.Println()
fmt.Println("Transposed object dependency graph (functions eliminated):")
for , := range {
fmt.Printf("\t%s depends on %d nodes\n", .obj.Name(), .ndeps)
for := range .pred {
fmt.Printf("\t\t%s is dependent\n", .obj.Name())
}
}
fmt.Println()
fmt.Println("Processing nodes:")
}
// Determine initialization order by removing the highest priority node
// (the one with the fewest dependencies) and its edges from the graph,
// repeatedly, until there are no nodes left.
// In a valid Go program, those nodes always have zero dependencies (after
// removing all incoming dependencies), otherwise there are initialization
// cycles.
:= make(map[*declInfo]bool)
for len() > 0 {
// get the next node
:= heap.Pop(&).(*graphNode)
if {
fmt.Printf("\t%s (src pos %d) depends on %d nodes now\n",
.obj.Name(), .obj.order(), .ndeps)
}
// if n still depends on other nodes, we have a cycle
if .ndeps > 0 {
:= findPath(.objMap, .obj, .obj, make(map[Object]bool))
// If n.obj is not part of the cycle (e.g., n.obj->b->c->d->c),
// cycle will be nil. Don't report anything in that case since
// the cycle is reported when the algorithm gets to an object
// in the cycle.
// Furthermore, once an object in the cycle is encountered,
// the cycle will be broken (dependency count will be reduced
// below), and so the remaining nodes in the cycle don't trigger
// another error (unless they are part of multiple cycles).
if != nil {
.reportCycle()
}
// Ok to continue, but the variable initialization order
// will be incorrect at this point since it assumes no
// cycle errors.
}
// reduce dependency count of all dependent nodes
// and update priority queue
for := range .pred {
.ndeps--
heap.Fix(&, .index)
}
// record the init order for variables with initializers only
, := .obj.(*Var)
:= .objMap[]
if == nil || !.hasInitializer() {
continue
}
// n:1 variable declarations such as: a, b = f()
// introduce a node for each lhs variable (here: a, b);
// but they all have the same initializer - emit only
// one, for the first variable seen
if [] {
continue // initializer already emitted, if any
}
[] = true
:= .lhs // possibly nil (see declInfo.lhs field comment)
if == nil {
= []*Var{}
}
:= &Initializer{, .init}
.Info.InitOrder = append(.Info.InitOrder, )
}
if {
fmt.Println()
fmt.Println("Initialization order:")
for , := range .Info.InitOrder {
fmt.Printf("\t%s\n", )
}
fmt.Println()
}
}
// findPath returns the (reversed) list of objects []Object{to, ... from}
// such that there is a path of object dependencies from 'from' to 'to'.
// If there is no such path, the result is nil.
func findPath( map[Object]*declInfo, , Object, map[Object]bool) []Object {
if [] {
return nil
}
[] = true
for := range [].deps {
if == {
return []Object{}
}
if := (, , , ); != nil {
return append(, )
}
}
return nil
}
// reportCycle reports an error for the given cycle.
func ( *Checker) ( []Object) {
:= [0]
// report a more concise error for self references
if len() == 1 {
.errorf(, InvalidInitCycle, "initialization cycle: %s refers to itself", .Name())
return
}
:= .newError(InvalidInitCycle)
.addf(, "initialization cycle for %s", .Name())
// subtle loop: print cycle[i] for i = 0, n-1, n-2, ... 1 for len(cycle) = n
for := len() - 1; >= 0; -- {
.addf(, "%s refers to", .Name())
= []
}
// print cycle[0] again to close the cycle
.addf(, "%s", .Name())
.report()
}
// ----------------------------------------------------------------------------
// Object dependency graph
// A dependency is an object that may be a dependency in an initialization
// expression. Only constants, variables, and functions can be dependencies.
// Constants are here because constant expression cycles are reported during
// initialization order computation.
type dependency interface {
Object
isDependency()
}
// A graphNode represents a node in the object dependency graph.
// Each node p in n.pred represents an edge p->n, and each node
// s in n.succ represents an edge n->s; with a->b indicating that
// a depends on b.
type graphNode struct {
obj dependency // object represented by this node
pred, succ nodeSet // consumers and dependencies of this node (lazily initialized)
index int // node index in graph slice/priority queue
ndeps int // number of outstanding dependencies before this object can be initialized
}
// cost returns the cost of removing this node, which involves copying each
// predecessor to each successor (and vice-versa).
func ( *graphNode) () int {
return len(.pred) * len(.succ)
}
type nodeSet map[*graphNode]bool
func ( *nodeSet) ( *graphNode) {
if * == nil {
* = make(nodeSet)
}
(*)[] = true
}
// dependencyGraph computes the object dependency graph from the given objMap,
// with any function nodes removed. The resulting graph contains only constants
// and variables.
func dependencyGraph( map[Object]*declInfo) []*graphNode {
// M is the dependency (Object) -> graphNode mapping
:= make(map[dependency]*graphNode)
for := range {
// only consider nodes that may be an initialization dependency
if , := .(dependency); != nil {
[] = &graphNode{obj: }
}
}
// compute edges for graph M
// (We need to include all nodes, even isolated ones, because they still need
// to be scheduled for initialization in correct order relative to other nodes.)
for , := range {
// for each dependency obj -> d (= deps[i]), create graph edges n->s and s->n
for := range [].deps {
// only consider nodes that may be an initialization dependency
if , := .(dependency); != nil {
:= []
.succ.add()
.pred.add()
}
}
}
var , []*graphNode // separate non-functions and functions
for , := range {
if , := .obj.(*Func); {
= append(, )
} else {
= append(, )
}
}
// remove function nodes and collect remaining graph nodes in G
// (Mutually recursive functions may introduce cycles among themselves
// which are permitted. Yet such cycles may incorrectly inflate the dependency
// count for variables which in turn may not get scheduled for initialization
// in correct order.)
//
// Note that because we recursively copy predecessors and successors
// throughout the function graph, the cost of removing a function at
// position X is proportional to cost * (len(funcG)-X). Therefore, we should
// remove high-cost functions last.
sort.Slice(, func(, int) bool {
return [].cost() < [].cost()
})
for , := range {
// connect each predecessor p of n with each successor s
// and drop the function node (don't collect it in G)
for := range .pred {
// ignore self-cycles
if != {
// Each successor s of n becomes a successor of p, and
// each predecessor p of n becomes a predecessor of s.
for := range .succ {
// ignore self-cycles
if != {
.succ.add()
.pred.add()
}
}
delete(.succ, ) // remove edge to n
}
}
for := range .succ {
delete(.pred, ) // remove edge to n
}
}
// fill in index and ndeps fields
for , := range {
.index =
.ndeps = len(.succ)
}
return
}
// ----------------------------------------------------------------------------
// Priority queue
// nodeQueue implements the container/heap interface;
// a nodeQueue may be used as a priority queue.
type nodeQueue []*graphNode
func ( nodeQueue) () int { return len() }
func ( nodeQueue) (, int) {
, := [], []
[], [] = ,
.index, .index = ,
}
func ( nodeQueue) (, int) bool {
, := [], []
// Prioritize all constants before non-constants. See go.dev/issue/66575/.
, := .obj.(*Const)
, := .obj.(*Const)
if != {
return
}
// nodes are prioritized by number of incoming dependencies (1st key)
// and source order (2nd key)
return .ndeps < .ndeps || .ndeps == .ndeps && .obj.order() < .obj.order()
}
func ( *nodeQueue) ( any) {
panic("unreachable")
}
func ( *nodeQueue) () any {
:= len(*)
:= (*)[-1]
.index = -1 // for safety
* = (*)[:-1]
return
}
The pages are generated with Golds v0.6.9-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |